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Abstract

Humans recognize optical reflectance properties of surfaces such as metal, plastic, or paper
from a single image without knowledge of illumination. We develop a machine vision system
to perform similar recognition tasks automatically. Reflectance estimation under unknown,
arbitrary illumination proves highly underconstrained due to the variety of potential illu-
mination distributions and surface reflectance properties. We have found that the spatial
structure of real-world illumination possesses some of the statistical regularities observed
in the natural image statistics literature. A human or computer vision system may be
able to exploit this prior information to determine the most likely surface reflectance given
an observed image. We develop an algorithm for reflectance classification under unknown
real-world illumination, which learns relationships between surface reflectance and certain
features (statistics) computed from a single observed image. We also develop an automatic
feature selection method.



1 Introduction

The upper portion of Figure 1 shows images of nine spheres, each photographed in two real-
world settings. The two images of each sphere are completely different at the pixel level
because illumination varies from one location to another. Yet, a human observer easily
recognizes that the images in each column represent spheres of similar materials, while the
images in different columns represent spheres of different materials. A human could classify
a sphere photographed in a third setting into one of these nine categories according to its
apparent material properties. This paper develops a computer algorithm with a similar
ability to recognize surface reflectance.

The reflectance estimation problem proves ill posed in the absence of restrictions on
the illumination. All the spheres in Figure 1 could be perfect chrome reflectors; because a
mirrored surface simply reflects its surrounding environment, a properly illuminated chrome
sphere could take on an arbitrary appearance. Different combinations of reflectance and
illumination could explain the observed data even when images of the surface are available
from all directions [22].

We wish to exploit information about the real world to determine the most likely surface
reflectance given an observed image. By analogy, consider the situation where one wishes
to estimate the variance of a Gaussian filter given only a single image which has been
blurred by that filter. In the absence of information about the original image, one can
only place an upper bound on the variance. If one assumes, however, that the original
image was a properly focused, real-world photograph, then one can estimate the variance
much more accurately by taking advantage of the fact that real-world scenes contain a great
deal of statistical structure. For example, real-world images typically exhibit characteristic
structures in the frequency and wavelet domains [23, 15, 28].

We believe that accurate reflectance estimation by humans or machines depends on the
spatial structure of real-world illumination, which shares some of the statistical regularity
studied in the literature on natural image statistics. We show that the relationship between
the reflectance of a surface and the statistics of its image depends on the structure of
natural illumination. We then extend our earlier work [7] on a system which classifies
surface reflectance from images using a machine learning approach. We have also developed
a principled method to choose from a bank of candidate features a subset that improve
classification accuracy given a limited amount of training data.

Several practical applications in computer vision and graphics motivate our efforts.
First, an ability to estimate reflectance under unknown illumination facilitates visual mate-
rial recognition, because different physical surfaces such as metal, plastic, and paper possess
different optical reflectance properties. Second, reconstruction of a scene from photographs
for computer graphics requires inference of both the geometry and the reflectance of visible
surfaces. Third, an ability to estimate reflectance from image data under unknown lighting
conditions may help overcome the limitations of shape-from-shading algorithms which as-
sume that reflectance is known in advance, and of classical algorithms for motion or stereo
estimation, which assume Lambertian surface reflectance.

We classify reflectance from a single monochrome image of the surface of interest, with-
out using contextual cues from the surrounding image. Our techniques could be improved
by drawing on additional sources of information, including color spectral decompositions
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Figure 1: The problem addressed by our classifier, illustrated using a database of pho-
tographs. Each of nine spheres was photographed under seven different illuminations. We
trained a nine-way classifier using the images corresponding to six illuminations, and then
used it to classify individual images under the seventh illumination. The classification algo-
rithm uses image data only from the surface itself, not from the surrounding background.

[26, 30], motion cues, and visual context. Humans, however, can effectively estimate cer-
tain surface reflectance properties even in the absence of these cues [12]. We chose to work
with single monochrome images, because we wish to determine what information the ba-
sic image structure captures about reflectance. We simplify the problem at this stage by
assuming that the surface under observation has homogeneous reflectance properties and
known geometry.

2 Related Work

The importance of reflectance models in computer graphics has motivated several researchers
to develop image-based reflectance estimation techniques. Tominaga et al. [30] present a
method for estimating Phong model [18] parameters from an image of a uniform cylindri-
cal surface illuminated by a point light source. Sato et al. [24] as well as Marschner [17]
develop similar techniques which accommodate a more general geometry acquired through
laser range scanning. These methods, unlike ours, do not apply to photographs taken in
the natural world under complex lighting conditions.

The inverse global illumination techniques of Yu et al. [32] handle reflectance estimation
without fully specified illumination, but require a collection of photographs representing all
surfaces and primary light sources in a scene. This technique iteratively estimates both
the illumination and reflectance of every surface patch in the scene. Our approach, on the
other hand, requires only an image of the surface whose reflectance is in question. We avoid
estimating illumination explicitly by characterizing it statistically.

2



Ramamoorthi and Hanrahan [22] perform mathematical analysis to determine when the
reflectance estimation problem is well posed. Their work is complementary to ours; they
show that reflectance estimation is ill posed in the absence of knowledge about illumination,
while we handle the problem in precisely these cases. Unlike their approach for joint recovery
of illumination and reflectance, our reflectance classification technique does not assume the
presence of a known directional source, the availability of multiple images, or a particular
form of reflectance.

3 Problem formulation

The reflectance of an opaque surface patch can be described by a bidirectional reflectance
distribution function (BRDF), which specifies what proportion of the light incident from
each possible illumination direction is reflected in each possible view direction. Since two
angles are necessary to specify a direction in a three-dimensional world, the BRDF is a
function of four continuous angular variables. Given the BRDF of a surface patch, one can
perform a weighted integration over the illumination incident on the surface patch from
every direction in the hemisphere surrounding its normal to determine the brightness of the
patch in an image.1

Estimating a BRDF from a single observed image under unknown illumination proves
highly ill posed. The observed image is a function of two continuous variables, whereas the
BRDF is a function of four continuous variables. The BRDF of a passive surface must satisfy
conservation of energy and reciprocity [13], but the space of physically realizable BRDFs
remains huge. Moreover, each pixel of the image depends not only on the BRDF, but on
the unknown illumination, a function of two variables which may differ from one point on
the surface to another. The unknowns occupy a much larger space than the observations.

Ideal Bayesian estimation of reflectance would require marginalizing over all possible
illuminations to find the most likely BRDF f̂ for a given observed image:

f̂ = arg max
f

P (f |R) = arg max
f

P (f)
∫

I
P (I)P (R|f, I)dI, (1)

where I denotes illumination from every direction at each point on the surface, and R
denotes the observed radiance of each point in the image. The prior probability over BRDFs
P (f) captures the fact that some reflectance functions are more likely than others in the
real world; for example, white matte surfaces are more common than holograms. Likewise,
P (I) captures the statistical structure of real-world illumination.

1Denote the BRDF by f(θi, φi; θr, φr), where θi and θr are the angles of the incident direction and the view
direction, respectively, from the surface normal, and φi and φr are their azimuthal angles. f(θi, φi; θr, φr)
indicates the ratio of the reflected radiance in direction (θr, φr) to incident irradiance from a differential solid
angle centered on direction (θi, φi). If I(θi, φi) gives the radiance of illumination incident from direction
(θi, φi), the total reflected radiance of the surface patch in the view direction (θr, φr) is given by [13]

∫ 2π

φi=0

∫ π/2

θi=0

f(θi, φi; θr, φr)I(θi, φi) cos θi sin θidθidφi.

If illumination is distant, the reflected light field (a collection of images of the surface from all angles) may
be expressed as a convolution of the illumination and the BRDF [22]. In this paper we have access to only
a single image, which cannot be expressed exactly as a convolution.
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Unfortunately, even if one could formulate the prior probabilities over illumination and
reflectance explicitly, integration over all possible illuminations and maximization of this
integral over all possible BRDFs would prove computationally daunting.2 We use two
alternative approaches in this paper. In Section 4, we utilize a parameterized reflectance
model from computer graphics to examine the relationship between illumination statistics,
image statistics, and reflectance. In Sections 5 and 6, we build a system to solve the
reflectance classification task of Figure 1. This system works with a finite set of arbitrary
reflectances, learning to differentiate between them based on training images photographed
or rendered under natural illumination.

4 Dependence of image statistics on reflectance

4.1 Statistical regularity of real-world illumination

One can measure the illumination incident from every direction at a particular point in the
real world using a camera located at the point of interest. By combining photographs from
that point in every direction, one can compose a spherical illumination map. If all sources
of direct and indirect illumination are relatively distant, the illumination map remains fixed
as the camera moves through space. One can therefore use such an illumination map to
render an object as it would appear at that location in space, using a generalization of
traditional environment mapping [6].

A photographically-acquired illumination map is a type of real-world image. Although
it differs in field of view and dynamic range from the photographs studied in the natural
image statistics literature [11, 15], it shares many of the statistical regularities of these
photographs, as shown in a separate paper [9]. Most natural illumination maps contain
a wide range of intensities corresponding to illumination or lack of illumination from var-
ious directions. If pixel intensity is linear in luminance, the pixel histogram typically has
positive skew due to the presence of sparse bright light sources. Marginal and joint distri-
butions of wavelet coefficients at various scales and orientations exhibit similar heavy-tailed
distributions from illumination map to illumination map (Figure 2).

Figure 3 shows synthetic images of two identical spheres under different illuminations.
Humans identify surface reflectance more easily in image B, rendered under a photographically-
acquired illumination map, than in image A, rendered under point source illumination.
Comparison of photographs of a sphere in a normally illuminated room and in a black room
with a point light source reveals the same effect. The simplicity of true point source illu-
mination violates the statistical regularities of typical natural illumination. Much previous

2Replacing the integration with a maximum over illuminations may lead to incorrect reflectance estimates.
In other words, joint estimation of illumination and reflectance, even when feasible, may fail to identify the
most likely reflectance. Consider a photograph of a white matte sphere, corrupted by slight high-frequency
imaging noise. One could explain this image approximately as a white matte sphere under any of a number
of illuminations, but none of these would predict the noisy image exactly. On the other hand, one could
explain the photograph precisely as a chrome sphere under just the right illumination. Thus the single
most likely combination of reflectance and illumination might indeed involve a chrome sphere. Integrating
over all possible illuminations would reveal that a more likely reflectance is white matte, because for that
reflectance a large number of illuminations produce approximately the observed image. Unlike Yu et al. [32]
and Ramamoorthi and Hanrahan [22], we wish to identify the most likely reflectance rather than explaining
the observed image data as a single combination of illumination and reflectance.
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Figure 2: Thick lines indicate distributions of horizontally-oriented wavelet coefficients at
three successive scales for an indoor illumination map (left) and an outdoor illumination
map (right). Thin lines are maximum likelihood generalized Laplacian distributions fit to
the empirical distributions. All the distributions have high kurtosis, with variance increasing
at coarser scales. Wavelet coefficients were computed with a nine-tap quadrature mirror
filter pyramid [27] from log-luminance equal-area cylindrical projections of the spherical
maps. Both illumination maps (Galileo’s tomb, eucalyptus grove) are due to Debevec [5].

work in reflectance estimation has considered the case of point source illumination as a
convenient starting point. We wish instead to take advantage of the structure of natural
illumination in estimating reflectance.

4.2 Relationship between image statistics and Ward model parameters

In this section, we use a parameterized reflectance model from computer graphics to gain
insight into the relationship between illumination statistics, surface reflectance, and surface
image statistics. Using synthetic images rendered under photographically acquired illumi-
nation, we examine the dependence of image statistics on model reflectance parameters. In
Section 5, we apply some of our insights to develop a reflectance classification algorithm

A B

Figure 3: (A) A sphere rendered under illumination by a point light source. (B) The same
sphere rendered under photographically-acquired illumination. The reflectance of the sphere
is specified by the Ward model (see Section 4.2), with parameters ρd = 0.083, ρs = 0.097,
α = 0.03.
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Figure 4: Effect of changes in Ward model reflectance parameters on an image and its pixel
intensity histogram. The top row shows images of a flat surface under a photographically-
acquired illumination map due to Debevec [5]. The bottom row shows corresponding his-
tograms for each image, with logarithmic vertical axes. The leftmost column has reflectance
parameter values ρd = .1, ρs = .1, and α = 0. The remaining columns have the same pa-
rameter values as the first except that ρd increases to .3 in the second column, ρs increases
to .3 in the third column, and α increases to .1 in the fourth column. The surface normal
direction is 45◦ from the vertical in each case, and the images have a 90◦ field of view.

which handles arbitrary reflectances.
We use a popular reflectance model from computer graphics due to Ward [31]. The

isotropic Ward reflectance model, which is a physically realizable variant of the common
Phong shading model, specifies a BRDF of the form

f(θi, φi; θr, φr) =
ρd

π
+ ρs

1√
cos θi cos θr

exp(− tan2 δ/α2)
4πα2

, (2)

where δ is the angle between the surface normal and a vector bisecting the incident and
reflected directions. The free parameters of this model are ρd, the fraction of incident
energy reflected by the diffuse (Lambertian) component, ρs, the fraction of energy reflected
by the specular component, and α, surface roughness measured as the standard deviation
of surface slope. Higher α implies a more blurred specular component. Although developed
empirically, the Ward model has been shown to provide an accurate fit for the BRDFs of
certain classes of materials [31].

We eliminated some of the complicating effects of geometrical distortion by considering
flat homogeneous surfaces under distant illumination. To a nearby viewer with a narrow
field of view, the specular reflection of such a surface is approximately a projection of the
illumination field blurred by a Gaussian filter. Because the surface is flat and illumination
is distant, the diffuse component is constant across the surface. The top row of Figure 4
shows images of four different surfaces rendered using the same photographically-acquired
illumination.
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Figure 5: Normalized derivatives of pixel histogram statistics with respect to ρd, ρs, and
α. The bars in each plot represent sensitivity of the mean, variance, skew, kurtosis, 10th
percentile, median, and 90th percentile of the pixel intensity distribution. Derivatives were
computed at parameter values ρd = .25, ρs = .05, and α = .01.

To determine how various statistics of the observed image vary with each reflectance
parameter under natural illumination, we computed empirical derivatives of image statis-
tics with respect to ρd, ρs, and α. We rendered flat surfaces using the previously described
simplifying approximations under nine photographically-acquired illumination maps from
Debevec’s Light Probe Image Gallery (http://www.debevec.org/Probes/ ) [5]. These illumi-
nation maps represent diverse lighting conditions from four indoor settings and five outdoor
settings. We normalized the overall intensity of each illumination as described in Section 5.4.
We measured the sensitivity of a statistic to a parameter as the mean derivative of the statis-
tic with respect to the parameter, normalized by the standard deviation of that statistic
across illuminations.3

Inspired by previous work on natural image statistics and texture modeling [14, 4],
we worked with statistics based on the distributions of pixel intensities and of wavelet
coefficients at different scales and orientations. Heeger and Bergen [14] based their texture
representation on distributions of the same quantities.

Figure 5 shows computed sensitivity values of several statistics characterizing the pixel
intensity histogram, including the first four moments and several percentiles of the distri-
bution. Large values, either positive or negative, indicate that variations in a particular
statistic due to change in a parameter are large relative to variations of that statistic be-
tween illuminations. The results suggest that the 10th percentile of pixel intensity may be
particularly useful in estimating ρd, that the mean and variance of intensities are relevant
to estimation of ρs, and that the variance, skew, and kurtosis of the intensity distribution
decrease as α increases.

To aid in interpreting these results, Figure 4 illustrates the effects of increasing each re-
flectance parameter on a particular image and its histograms. Because the diffuse reflectance
component is constant for these flat images, increasing ρd simply shifts the entire histogram
to uniformly higher values. Most illumination maps contain regions of low illumination,

3Let xi denote the values of a particular statistic at a fixed parameter setting for illuminations i =
1, 2, . . . , N . Let x̃i be the corresponding value of the statistic for each illumination when a particular
parameter increases by a small quantity ∆p. Let µ and σ denote the mean and standard deviation of xi,
while µ̃ and σ̃ denote the corresponding quantities for x̃i. We measure the local sensitivity of the statistic
to the parameter being changed as µ̃−µ

∆p
√

(σ2+σ̃2)/2
.
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Figure 6: Absolute values of normalized derivatives of wavelet coefficient statistics with
respect to α parameter. Statistics shown are the variance, kurtosis, 10th percentile and
90th percentile of the horizontal, vertical, and diagonal wavelet coefficients at the second,
third, and fourth finest scales. The variance, kurtosis, and 90th percentile of each subband
decrease with increasing α, while the 10th percentile increases. As in Figure 5, derivatives
are computed at parameter values ρd = .25, ρs = .05, and α = .01.

where the specular component contributes little to observed radiance. The darkest areas of
the observed image, as measured by the 10th percentile of pixel intensities, therefore prove
indicative of its diffuse reflectance.

Increasing the strength of specular reflectance ρs scales the specular component of the
reflectance, increasing the mean and variance of the pixel distributions. Increasing the
surface roughness α blurs the specular reflection, eliminating outliers. Because most outliers
are due to localized light sources or reflections, blurring the image not only reduces variance
and kurtosis of the histogram, but also reduces its skew.

We performed similar analysis for statistics summarizing the distributions of wavelet
coefficients. We constructed a two-dimensional pyramid from each image using nine-tap
symmetric quadrature mirror filters [27]; our experience is that the precise choice of the
pyramidal decomposition is not critical in gathering image statistics. We then computed
moments and percentiles of the coefficients at each scale and orientation. Figure 6 shows the
normalized derivatives of several such statistics with respect to the α blur parameter. As
α increases, the variance and kurtosis of each subband decrease. Variances of the wavelet
coefficient distributions at different scales provide an approximate measure of the spectral
power in different frequency bands. Kurtoses of these distributions provide a rough measure
of image edginess, because edges tend to produce extreme values of wavelet coefficients,
leading to the heavy-tailed (highly kurtotic) distributions typical of natural illumination.
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Figure 7: Solid symbols indicate locations in a two-dimensional feature space of images of
spheres of six reflectances (Figure 11), each rendered under nine different real-world illumi-
nations due to Debevec. Lines separate the regions which the SVM classifier (Section 5.2)
assigns to different reflectances. Statistics were computed after the images were warped as
described in Section 5.1.

At the small value of α (0.01) used in computation of the derivatives for this figure, the
variances of the finest scale subbands are particularly sensitive to a change in blur. At
higher values of α, the variances of the coarser subbands become more sensitive than the
variances of the finer subbands.

For curved geometries or for wider view angles, the relationships between parameter val-
ues and image statistics become more complicated. The radiance of the diffuse component is
not constant across the surface, and statistics of the observed image are non-stationary even
if illumination statistics are stationary (Section 5.1). However, computations of normalized
derivatives from rendered images yield similar results. Figure 7 shows how differently illumi-
nated surfaces of a particular reflectance tend to cluster in a space defined by appropriately
chosen image statistics. The horizontal axis of the scatter plot represents the 10th percentile
of pixel intensities, while the vertical axis represents the variance of the horizontal bandpass
filter output at the second finest scale. The former correlates with diffuse reflectance, while
the latter depends on the strength and sharpness of the specularity.

In order to estimate reflectance accurately, we wish to choose not a single informative
statistic, but several image statistics which jointly characterize reflectance. Normalized
derivatives do not indicate whether two statistics capture similar or different information
about reflectance. Section 5.3 describes one approach to addressing this issue.

If the normalized derivative computations are repeated with illuminations whose statis-
tics differ from those of natural images, the results may differ significantly. For example
Figure 8 is analogous to Figure 5, except that the natural illumination maps were replaced
by eight-by-eight grids, with each grid square chosen by an unbiased coin toss as black or
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Figure 8: Normalized derivatives corresponding to those of Figure 5, but for images rendered
under random “checkerboard” illuminations. Vertical axes are different from Figure 5.

white. The relative values of the normalized derivatives are quite different from those of
Figure 5. When α increases, for example, variance tends to increase, but skew does not
change significantly, and kurtosis actually increases. At low α, the pixel histogram is binary;
as α increases, it approaches a Gaussian shape. The normalized derivatives of Figure 8 have
significantly larger magnitudes than those of Figure 5, due to the greater regularity of the
“checkerboard” illuminations.

5 A method for reflectance classification

To solve the classification problem of Figure 1, we attempt to select from a finite set of
reflectances the one which most closely represents the reflectance of an observed surface.
The candidate reflectances may be defined by different parameter settings of a reflectance
model such as the Ward model, but they could also be arbitrary BRDFs specified as lookup
tables or by a set of photographs of a real surface. Given images of several surfaces under
various illuminations, we wish to classify photographs under unknown, novel illumination.

We base our classifier on statistics such as those examined in Section 4.2. Specifically,
we characterize pixel intensity distributions and distributions of wavelet coefficients at each
scale and orientation using their mean, variance, skew, kurtosis, and 10th, 50th, and 90th
percentiles. We also consider several additional families of statistics, including spectral
power in oriented frequency bands. The following sections consider the effects of surface
geometry on the observed image as well as our choice of a classification technique and of
classification features.

5.1 Geometry

If we assume that both the observer and illumination are distant relative to the curvature of
a convex surface under observation, the brightness a surface point depends only on the local
surface orientation. Hence an image of the surface determines a relationship between surface
orientation and observed radiance for a particular illumination condition. We have chosen
to illustrate our techniques using spheres because we can capture their geometry precisely
from image contours. In a separate paper, we extend our technique to other objects of
known geometry, and show that it proves robust to inaccurate geometry estimates [8].

We wish to compute statistics on an image representing radiance as a function of orien-
tation. An image of a sphere possesses non-stationary image statistics because a perspective
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Original image Unwrapped annulus Wavelet pyramid

Pixel intensity histogram Histograms of coefficients 
(one histogram per subband)

Statistics of one histogram Statistics of each histogram

Reflectance estimate

Figure 9: Flowchart for computation of image features, which applies to both testing and
training of the classifier. The features are histogram statistics, computed on the original
image and on its wavelet transform.

or orthographic projection compresses features near the edges. One could reduce these ef-
fects by considering radiance as a function of orientation and performing the analysis in a
spherical domain,4 using spherical wavelet transforms [25]. We have chosen initially to sim-
ply warp the observed image into one with more nearly stationary statistics. In particular,
our algorithm extracts an annulus of the spherical image and unwraps it into a rectangle
using a polar-to-rectangular coordinate transformation (Figure 9). Other warping methods
yield similar results [8].

5.2 Classification techniques

Whether we choose features by hand or automatically, we would like our classifier to be
robust to the inclusion of some features whose values vary significantly from image to image
but provide little information about the reflectance class. We chose support vector machines
(SVMs) for classification because they tend to generalize well given a limited number of
training samples and a large number of features [10]. Our implementation utilizes the
SVMTorch software [3] with Gaussian kernels to train and apply SVM classifiers. SVMTorch
uses a one-against-all voting scheme to perform multiclass classification. As discussed in
Section 6, we found that SVM classifiers substantially outperform nearest neighbor and
k-nearest neighbor classifiers when the number of features is large compared to the number
of training images. Figure 7 shows the class boundaries determined by an SVM classifier
based on two statistics.

4Even when the image is defined as a function on the sphere instead of the plane, its statistics are not
stationary. Consider a typical reflectance function consisting of a diffuse and a specular component. A
localized light source contributes most to the diffuse component for a surface patch whose normal is in the
light source direction. The same light source contributes most to the specular component for a surface patch
whose normal bisects the light direction and the view direction. Even if illumination is isotropic, image
statistics will vary spatially.
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5.3 Feature selection

In practice, we have only a limited amount of training data, because either the surface images
themselves or the illumination maps used to render them must be acquired photographically
in real-world environments. Given a large set of candidate features, we wish to automatically
identify a small subset which will yield high classifier performance given limited training
data. In other words, we wish to select those features whose variation from one image
to another captures the most information about the reflectance class corresponding to an
image. Mathematically, we wish to find a set of N features which minimizes the Bayes error
for this classification problem.

To perform this minimization explicitly, one must compute the Bayes error for every
combination of N features. One might limit the combinatorial explosion by using a greedy
algorithm which chooses features sequentially, but choosing the Nth feature would still
require estimates of joint probability densities for N features. The number of training
samples required to estimate an N -dimensional probability distribution grows exponentially
with N .

Because we have a limited number of training samples, we need to avoid high-dimensional
joint density estimation. We eliminate the need for multidimensional probability density
estimation by using an iterative method which alternates between the following two steps:

1. Estimate the marginal probability density of each individual feature for images of a
particular class (Figure 10). Choose the feature which, when used alone for classifi-
cation, leads to minimal Bayes classification error assuming the estimated probability
densities.

2. Regress each of the features which have not yet been selected against the selected
feature to obtain a predictive relationship. Modify each feature which has not yet
been selected by subtracting off its predicted value based on the selected feature.

We have found empirically that the features discussed in Section 4.2 are unimodally
distributed for any particular reflectance class. In fact, the empirically based image model
of Portilla et al. [20], which describes natural images using a Gaussian scale mixture model
in the wavelet domain, suggests that features based on marginal distributions of wavelet
coefficients will be log normally distributed. We therefore fit Gaussian distributions to our
candidate features in the log domain. Besides the ease and robustness with which one can
estimate the mean and variance of a Gaussian given a limited number of data samples, this
simple model offers the advantage that the Bayes error reduces to a sum of normal error
functions.

We have also found empirically that features tend to vary monotonically with one an-
other. We therefore use simple affine regression to remove the dependence of one feature
on another.

5.4 Lightness ambiguity

Because our analysis techniques rely solely on the image of the surface of interest, they
suffer from ambiguity between the overall strength of illumination and the overall lightness
of the surface. A white matte sphere under dim illumination and a gray matte sphere under
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Figure 10: Bayes error calculation for a three-way classification problem for a single feature.
The upper subplot shows the scatter of values of a feature (the variance of coefficients in one
wavelet subband) for three different reflectance classes. The lower subplot shows Gaussian
distributions which have been fit to the feature values for each class. The Bayes error
is the error probability of a classifier which always chooses the most likely class given a
particular feature value. One computes it by integrating over the appropriate portions of
each distribution.

bright illumination will produce identical images. Resolution of this ambiguity requires
contextual information from the remainder of the image or scene. Because color constancy
and lightness estimation have been studied separately [1, 2], we eliminate this problem
from the current study by normalizing our images for overall strength of illumination, as
measured by the brightness of a standard white surface positioned perpendicular to the
viewer at the position of the surface under observation.

6 Results

6.1 Image sets

We trained classifiers using five different data sets, one comprised of photographs and the
others consisting of synthetic images rendered under photographically-acquired illumination
maps. We photographed spheres of nine different materials under seven diverse illumination
conditions, including both indoor and outdoor settings. Images were acquired in 24-bit
RGB format using a Nikon D1 digital camera and then converted to 8-bit gray scale images
for further processing. Figure 1 shows examples of these images. The entire image set
is available at http://www.ai.mit.edu/people/rondror/sphere photos/. Because the digital
camera applies a compressive nonlinearity, these images are not linear in luminance.

Synthetic images have the advantage that the surface BRDF is known exactly. To create
synthetic images, we used Ward’s Radiance package [16], which efficiently implements the

13



black matte black shiny chrome gray shiny white matte white shiny

Figure 11: Synthetic spheres of 6 different reflectances, each rendered under one of Teller’s
illumination maps. Ward model parameters are as follows: black matte, ρd = .1, ρs = 0;
black shiny, ρd = .1, ρs = .1, α = .01; chrome, ρd = 0, ρs = .75, α = 0; gray shiny, ρd = .25,
ρs = .05, α = .01; white matte, ρd = .9, ρs = 0; white shiny, ρd = .7, ρs = .25, α = .01.

Ward reflectance model. Our rendering methodology is similar to that of Debevec [6], but
we prefilter the illumination map in the spherical harmonic domain [21] before rendering
the diffuse component. Our reflectance algorithm treats the rendering machinery as a black
box, using only the final rendered images in the training process.

Our four synthetic data sets consist of images of spheres from two different sets of
reflectances, each rendered under two different illumination sets. The first set of six re-
flectances (Figures 11) was specified by Ward model parameters chosen to correspond to
common materials of distinctly different appearances. The second set of reflectances in-
cludes 11 combinations of Ward model parameter settings (Figure 12), chosen such that
classification based solely on mean brightness of the observed image produces poor perfor-
mance.

Each of these two sets of spheres was rendered under Debevec’s nine spherical illumi-
nation maps. Figure 12 shows spheres rendered under ones of these illuminations. We also
rendered all the spheres under a larger set of 100 illuminations, based on high dynamic
range imagery acquired by Teller et al. [29] in outdoor urban environments and available at
http://city.lcs.mit.edu/data. Because these illumination maps capture only the upper hemi-
sphere of the environment, we mirrored the upper hemisphere into the lower hemisphere
before rendering the spheres (Figure 11). Some ensemble statistics of these illumination
maps will be affected by the fact that each map contains two skies, and that each was
collected in an urban environment. We therefore expect a classifier trained on a data set
rendered under the Teller illuminations to behave somewhat differently from a set trained
under the Debevec illuminations, even when the underlying reflectance classes are the same.
We believe, however, that both sets of illumination maps preserve many of the typical sta-
tistical characteristics of real-world illumination and are therefore worthy of study.

Each sphere was rendered from a view angle midway between a top view and a horizontal
view. The resulting renderings were converted from Radiance’s native high dynamic range
format to floating point images for further processing.

6.2 Evaluation metrics

To test classification accuracy for a particular choice of features using a limited number of
available sample images, we performed a variant of leave-one-out cross-validation. Working
with any one of the image sets described in Section 6.1, we left out one illumination at a
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Figure 12: Synthetic spheres representing 11 reflectances, each rendered under an illumina-
tion map captured by one of Debevec’s light probes. Ward model parameters are as follows:
(A) ρd = .1, ρs = 0, (B) ρd = .9, ρs = 0, (C) ρd = .35, ρs = 0, (D) ρd = 0, ρs = .75, α = 0,
(E) ρd = .05, ρs = .05, α = 0, (F) ρd = .7, ρs = .2, α = 0, (G) ρd = .05, ρs = 05, α = .02,
(H) ρd = .7, ρs = .25, α = .02, (I) ρd = .25, ρs = .1, α = 0, (J) ρd = .25, ρs = .1, α = .02,
(K) ρd = 0, ρs = .75, α = .02. These parameters were chosen such that several spheres
share each total reflectance (ρs + ρd).

time. We trained a classifier on the images corresponding to the remaining illuminations
and then applied it to test images corresponding to the illumination which had been left out.
By leaving out each illumination and repeating this process, we were able to use each image
in a set as a test image. Because our feature selection technique produces similar rankings
of features when applied to the entire data set or to the data set with one illumination
omitted, we used entire data sets for automatic feature selection.

6.3 Performance

Table 1 compares the performance of classifiers trained using various combinations of fea-
tures on each of the five data sets. As a baseline, the table includes the performance of a
completely random classifier, and of a classifier based on only the mean brightness of the
observed sphere. The next two lines of the table list performances for feature sets which we
hand-selected based on the analysis of Section 4.2 and experimentation with multiple data
sets. One of these, illustrated in Figure 7, consists of only two features, but performs signifi-
cantly better than the classifier based on the image mean. The other consists of six features,
namely the mean and tenth percentile of the original unwrapped image, the variance of co-
efficients in the finest and second-finest radially (vertically) oriented subbands, the ratio
of these two variances, and the kurtosis of the second-finest radially oriented subband. A
classifier based on this feature set achieves nearly perfect performance (99.7% accuracy) on
a set with 100 examples of each reflectance class. As expected, classifier accuracy decreases
as the number of classes increases. Accuracy also decreases as the number of illuminations
decreases, because the number of available training samples decreases.

We considered a total of 117 features, based on the distributions of image pixel values and
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Image set
Debevec illuminations (9) Teller illuminations (100) Photos (7)

Feature set 6 classes 11 classes 6 classes 11 classes (9 classes)
Chance (0) 16.7 9.1 16.7 9.1 11.1
Image mean (1) 50.0 19.2 73.5 32.5 42.9
Hand-selected (2) 90.7 68.7 97.0 74.4 50.8
Hand-selected (6) 98.1 83.8 99.7 98.5 93.7
Auto-selected (6) 96.3 66.7 99.3 94.4 74.6
PCA (6) 79.6 61.6 96.0 86.8 71.4
All features (117) 79.6 85.9 96.0 97.9 79.4

Table 1: Cross-validation performance (in % accuracy) for SVM classifiers using different
feature sets on all five image sets described in Section 6.1. “Auto-selected” refers to the
feature selection method of Section 5.3. Numbers in parentheses indicate the number of
features, the number of illuminations, or the number of classes.

of wavelet coefficients at various scales and orientations, as well as power spectral content in
several frequency bands and ratios of variances of wavelet coefficients at successive scales.
Table 1 shows the performance of classifiers trained using all 117 statistics. The SVM
classifiers perform surprisingly well given the small number of training samples — as few
as six per class for the photographic data set.5 However, the large number of features
compared to the number of available samples per class leads to overfitting in the classifier,
and performance typically suffers compared to that obtained with a few well-chosen features.

We applied our feature selection method to the synthetic image set consisting of spheres
of six reflectances rendered under the nine Debevec illuminations. For comparison, we
performed principle components analysis (PCA) on the same data set and selected six
linear combinations of features corresponding to the first six principle components.6 Our
feature selection method leads to significantly better performance than PCA, because PCA
identifies features which vary significantly from image to image rather than features which
allow discrimination of one reflectance class from another. For the image set on which we
performed feature selection and for the other set based on the same reflectances (the first
and third columns of performance values in Table 1, respectively), our automatic feature
selection method led to significantly better results than those obtained using the entire
feature set. For image sets based on other reflectance classes, this particular set of features
did not perform as well. Features which discriminate well among one set of reflectance
classes may not discriminate as well among other reflectance classes. Also, our automatically
selected features never performed as well as the set of 6 hand-selected features, showing that
the automatic selection technique leaves room for improvement.

Table 2 compares the performances of support vector machines, nearest neighbor clas-
sifiers, and k-nearest neighbor classifiers. SVM classifiers outperform the others due to the
large number of features and classes compared to the number of available training samples.

5Because we leave out one illumination at a time in the cross-validation process, the number of available
training samples is one less than the number of illuminations.

6To improve performance, we normalized each of the selected principal components to have the same
variance.
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Classification 6 features 117 features
technique 9 illuminations 100 illuminations 9 illuminations 100 illuminations
SVM 83.8 98.5 85.9 97.9
nearest neighbor 78.8 96.1 67.7 63.6
5-nearest neighbor 75.8 95.9 68.5 84.6

Table 2: Comparison of performances of SVM, nearest neighbor, and k-nearest neighbor
(k = 5) classifiers, using the set of six hand-selected features and the complete set of
117 features. Classification accuracies are shown (in %) for synthetically rendered image
sets with 11 reflectances, under both the nine Debevec illuminations and the 100 Teller
illuminations.

Illumination Misclassified image Potential confusion

Figure 13: Classification errors for the set of photographs. In each row, the middle column
shows a misclassified image. The left-hand column shows an image of a chrome sphere under
the same illumination as the misclassified sphere. The right-hand column shows a sphere
in the training data set belonging to the incorrectly chosen class; the image shown is the
one with minimum Euclidean distance from the misclassified image in the feature space.

Nearest neighbor classifiers also suffer from the fact that different features exhibit different
variances across the image sets. As expected, the performance difference is larger when the
classifiers are trained with the full feature set than when they are trained with only a few
selected features.

6.4 Classification failures

The SVM classifier based on the set of six hand-selected features misclassified only four of
the 63 images in the set of photographs, outperforming the first author of this paper. Fig-
ure 13 illustrates two of the four misclassifications. In each row, the middle column shows
a misclassified image, the left-hand column shows a chrome sphere under the same illumi-
nation, and the right-hand column shows a sphere of a different reflectance that represents
a potential source of confusion.
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The first row of Figure 13 illustrates the most egregious of the misclassifications. A
white matte ball (column c in Figure 1) illuminated by a bright desk lamp is misclassified
as a rough metallic ball (column e). This illumination, which accounted for two of the
four classification errors, was the only one created by the photographer expressedly for the
purpose of collecting these photographs. Images under this point-source-like illumination
also proved most difficult for humans to classify, lending credence to the claim that the sta-
tistical regularity of “natural” illumination plays an essential role in reflectance estimation.
The classifier might perform better if the training set included any illuminations similar to
this one.

The second row of Figure 13 shows a more subtle error, in which a bright shiny metallic
ball (column e in Figure 1) under a collection of bright incandescent lights is misclassified
as a black shiny ball (column d). In this case, the images in the second and third column
represent a potential source of confusion even to a human observer.

7 Discussion

Real-world illumination exhibits predictable statistical structure which may facilitate re-
flectance estimation under unknown illumination, an otherwise ill-posed problem. This
paper demonstrates the feasibility of reflectance classification from single monochrome im-
ages in unknown real-world scenes. Although our classification algorithm rivals human
performance for test data sets, it leaves a number of open research questions.

First, we have not solved the problem in an explicitly Bayesian manner. While we have
analyzed the relationship between illumination statistics, image statistics, and reflectance,
we do not translate the results directly to an optimal technique for reflectance classification
or reflectance parameter regression. We would like to put our classification method on a
more rigorous theoretical foundation.

Second, we believe that significant performance gains may be attained through the use
of a more general feature set. The features we use at present do not explicitly model image
edges. Features which capture dependencies between wavelet coefficients at neighboring
scales and orientations have proven useful in texture modeling [19]. Such features could be
incorporated into our classification scheme and feature selection algorithm.

Finally, our method for feature selection may prove more widely applicable to texture
classification problems. Our approach bears some similarity to the work of Zhu, Wu, and
Mumford [33], who developed a general feature selection method for texture modeling.
However, a reflectance or texture classification problem differs from a texture analysis and
synthesis problem in two important regards. First, we wish to find not the features which
best characterize each image, but those which best distinguish reflectances from one another.
Second, because machine learning techniques such as SVMs require inputs to be a collection
of scalar features rather than a collection of probability distributions, we select features
rather than simply selecting the filters whose output they characterize. That is, we select
particular summary statistics of distributions of filter outputs, rather than entire histograms.
One could generalize our approach by fitting more general parametric forms to the marginal
feature distributions, or by replacing the affine regression with nonlinear regression.
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