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IMAGE DATA COMPRESSION WITH THE LAPLACIAN PYRAMID*
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   Abstra      c      t

We describe a new technique for image encoding
in which Gaussian-like operators serve as the basis
functions. The representation differs from es-
tablished techniques in that the Gaussian code ele-
ments are localized in both space and spatial fre-
quency.

Pixel to pixel correlations are first removed
by subtracting a low-pass filtered copy of the
image from the image itself. The result is a net
data compression since the difference, or error,
image has low variance, and the low-pass filtered
image may be represented at reduced sample densi-
ty. Further data compression is achieved by quan-
tizing the difference image and repeating the en-
coding process for the low-pass filtered image.

The encoding process is equivalent to sampling
the image with Laplacian operators of many scales.
Thus the code tends to enhance salient image fea-
tures. A primary advantage of the present code is
that it is well suited for many image analysis
tasks as well as for data compression. Fast algo-
rithms are described for coding and decoding.

   I. Introduction   

A common characteristic of images is that
neighboring pixels are highly correlated. To rep-
resent the image directly in terms of the pixel
value is therefore inefficient: most of the en-
coded information is redundant.

The first task in designing an efficient, com-
pressed code is to find a representation which, in
effect, decorrelates the image pixels. This has
been achieved through predictive and through trans-
form techniques.

In predictive coding pixels are encoded se-
quentially in a raster format. However, prior to
encoding each pixel, its value is predicted from
previously coded pixels in the same and preceding
raster lines. The predicted pixel value, which
_________________________
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represents redundant information, is subtracted
from the actual pixel value, and only the dif-
ference, or prediction error, is encoded. Since
only previously encoded pixels are used in predict-
ing each pixel's value, this process is said to be
causal. Restriction to causal prediction facili-
tates decoding: to decode a given pixel its pre-
dicted value is recomputed from already decoded
neighboring pixels, and added to the stored pre-
diction error.

Non-causal prediction, based on a symmetric
neighborhood centered at each pixel should yield
more accurate prediction, and hence greater data
compression. However this approach does not per-
mit simple sequential decoding. Non-causal
approaches to image coding typically involve image
transforms, or the solution to large sets of
simultaneous equations. Rather than encode pixels
sequentially, they are encoded all at once, or by
blocks .

Both predictive and transform techniques have
advantages. The former is relatively simple to
implement and readily adapted to local image
characteristics. The latter generally provides
greater data compression, but at the expense of
greater computation.

Here we shall describe a new technique for
removing image correlation which is intermediate
between the predictive and transform methods. The
technique is non-causal, yet computations are
relatively simple.

The predicted value for each pixel is computed
as a local weighted average, using a symmetric.
unimodal, weighting function centered on the pixel
itself. The predicted values for all pixels are
first obtained by convolving this Gaussian-like
weighting function with the image. The result is a
low-pass filtered image which is then subtracted
from the original.

Let g0(ij) be the original image, and g1(ij) be
the result of applying an appro-priate low-pass
filter to g0. The prediction error L0(ij), is     
then given by

L0(i3) = g0(ij) – g1(ij)

Rather than encode g0 we encode L0 and g1. This
results in a net data compression because (a) L0   
is largely decorrelated, so may be represented
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pixel by pixel with many fewer bits than g0, and
(b) g1 is low-pass filtered so may be encoded at a
reduced sample rate.

Further data compression is achieved by
iterating this process. The reduced image, g1, is
itself low-pass filtered to yield g2 and a second
error image is obtained: L2(ij) = g1(ij) – g2(ij).
By repeating these steps several times we obtain a
sequence of two-dimensional arrays L0, L1, L2..LN,
each of which is smaller than its predecessor (by
a factor of l/4). If we now imagine these arrays
stacked one above another the result is a tapering
pyramid data structure. The value at each node in
the pyramid represents the difference between two
Gaussian-like functions convolved with the original
image. The difference of Gaussian (or DOG) is
equivalent to the so-called Laplacian operators
commonly used in image enhancement (Rosenfeld and
Kak, 1976). Thus we refer to the proposed com-
pressed image representation as the Laplacian-
pyramid code.

The coding scheme outlined above will be
practical only if required filtering computations
can be performed with an efficient algorithm. A
suitable fast algorithm has recently been developed
(Burt, 1981) and will be described in the next sec-
tion.

Two additional characteristics of the Lapla-
cian-pyramid code may give it an advantage over
other encoding systems. First, the code is very
similar to image representation in the human visual
system. Thus additional compression may be
achieved by quantizing the code elements, with
quantization levels directly matched to perceptual
character-istics of human observers. Second, and
perhaps more important, is the fact that the
Laplacian- pyramid code tends to enhance salient
image features. Laplace operators are used in
computer image analysis to detect simple features
such as edges. Image representations based on
convolution with Laplacians have been proposed for
a wide variety of basic analysis tasks including
texture analysis, motion, and stereopsis (Marr and
Poggio, 1979; Pietikainen, 1980). Thus the La-
placian-pyramid code provides not only a compressed
representation but one which is appropriate for
computer image understanding.

   II. The Gaussian Pyramid

The first step in Laplacian pyramid coding is
to low-pass filter the original image g0 to obtain
image g1. We say g1 is a "reduced" version of g0   
in that both reso-lution and sample density are de-
creased. In a similar way we form g3 as a reduced
version of g2, and so on. Filtering is performed
by convolution with a Gaussian-like weighting func-
tion, so the sequence of images g0, g1, .. , gN is
called the Gaussian pyramid.

A fast algorithm for generating the Gaussian
pyramid is given in the next sub-section. In the
following subsection we show how the same algorithm
can be used to "expand" an image array by interpo-
lating values between sample points. This device
is used here to help visualize the contents of

levels in the Gaussian pyramid, and in the next
section to define the Laplacian pyramid.

   A) Gaussian Pyramid Generation

Suppose the image is represented initially
by the array go which contains C columns and R rows
of pixels. Each pixel represents the light inten-
sity at the corre-sponding image point by an in-
teger, I, between 0 and K-1. This image becomes
the bottom, or zero level of the Gaussian pyramid.
Pyramid level l contains image g1, which is a re-
duced, or low-pass filtered version of g0. Each
value within level 1 is computed as a weighted
average of values in level O within a 5 by 5 win-
dow. Each value within level 2, representing g2,
is then obtained from values within level l by
applying the same pattern of weights. A graphical
representation of this process in one dimension is
given in Figure l,

The level to level averaging process is per-
formed by the function REDUCE.

gk = REDUCE(gk – 1)           (1)

which means
for levels 0 < l    <    N

and nodes i,j 0    <    i < Cl, O    <    j < Rl

  gl(i,j) = 

m=−
∑

2

2

n=−
∑

2

2
w(m,n)gl – 1(2i+ m,2j + n)

Here N refers to the number of levels in the
pyramid, while Cl and Rl are the dimensions of the
lth level. Note in Figure l that the density of
nodes is reduced by half in one dimension, or by a
fourth in two dimen-sions from level to level. The
dimensions of the original image are appropriate
for pyra-mid construction if integers MC, MR and N
exist such that C = MC2

N + 1 and R = MR2
N + 1. (For

example if MC and MR are both 3 and N is 5 then
images measure 97 by 97 pixels.) The dimensions of
gl are Cl = MC2

N-l + 1 and Rl= MR2
N-1+ 1.

   The generating kernel.    Note that the same    
5 by 5 pattern of weights w is used to generate
each pyramid array from its predecessor. This
weighting pattern, called the generating kernel, is
chosen subject to cer-tain constraints. For simpli-
city we make w separable:

w(m,n) = ŵ(m) ŵ(n).

The one-dimensional, length 5, function w is nor-
malized

m=−
∑

2

2

ŵ(m) = 1

and symmetric

ŵ(i) = ŵ(-i) for i = 0, l and 2.

An additional constraint is called equal contribu-
tion (Burt l981). Let ŵ(0) = a, ŵ (-1) = ŵ (l) =
b and ŵ (-2) = ŵ (2) = c. In this case equal
contribution requires that a + 2b = 2c. These three
constraints are satisfied when
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ŵ(O) = a

ŵ(-l) = ŵ(l) = (1/4)a

ŵ(-2) = ŵ(2) = 1/4 - a/2

   Equivalent weighting functions.    For certain
choices of the generating kernel, i.e., for cer-
tain a, the process of iterative pyramid genera-
tion described above is equi-valent to convolving
the image with Gaussian-like weighting functions.
That is, the value of any node could have been ob-
tained directly (although at considerably greater
compu-tational cost) by convolving the image with a
Gaussian-like weighting function centered at the
node. The size of the equivalent weighting func-
tion doubles from one level to the next, as does
the distance between samples.

Equivalent weighting functions for Gaussian-
pyramid levels 1, 2 and 3 are shown in Figure 2.
In this case a = 0.4. The shape of the equivalent
function converges rapidly to a characteristic form
with successively higher planes of the pyramid, so
that only its scale changes. However, this shape
does depend on the choice of a in the generating
kernel. Characteristic shapes for three choices of
a are shown in Figure 3. Note that the equivalent
weighting functions are particularly Gaussian-like
when a = 0.4. When a = 0.5 the shape is triangu-
lar; when a = 0.3 it is flatter and broader than a
Gaussian.

   Fast filter.    The effect of convolving an
image with a Gaussian-like function is to blur, or
low-pass filter, the image. The py-ramid algorithm
reduces the filter band limit by one octave from
level to level. The sample interval is also re-
duced by this factor, but remains below the
Nyquist limit. This is a fast algorithm, requiring
fewer computational steps to compute a set of
filtered images than are required by the fast
Fourier trans-form to compute a single filtered
image (Burt, 1981).

   B.       Ga      ussi      an Pyramid interpolation.

We now define a function EXPAND as the re-
verse of REDUCE. Its effect is to expand an M + 1
by N + 1 array into a 2M+ 1 by 2N+ 1 array by
interpolating new node values be-tween the given
values. Thus EXPAND applied to array gl of the
Gaussian pyramid would yield an array gl, 1 which is
the same size as gl - 1. If EXPAND is applied l
times, gl is ex-panded to the size of the original
image.

Let gl,n be the result of expanding gl n
times. Then

gl,0 = gl                    (2)

and
gl,n = EXPAND(gl,n-l)

By EXPAND we mean
for levels O < l    <    N and O    <    n
and nodes i,j 0    <    i < Cl-n O    <    j < Rl-n

gl,n(ij) = 4

m=−
∑

2

2

n=−
∑

2

2
w(m,n)gl,n-1((i-m)/2,(j-n/2)).

Only terms for which (i - m)/2 and (j - n)/2 are
integers are included in this sum.

Gaussian pyramid filtering and interpolation
are illustrated in Figure 4. In this example the
original image" is a one-dimensional step func-
tion of width 129 samples, as shown in Figure 4a.
Sample values of g are shown as dots in Figure 4b.
The expanded function g4,4, shown in 4b as a dark
curve, gives a graphic representation of the con-
tents of g4, clearly showing the effects of low-
pass filtering. The function g4,4 was obtained by
repeated interpolation between sample points,
using EXPAND. The same result could have been ob-
tained if the equivalent weighting functions at
level 4 were scaled by the sample values and then
summed. Appro-priately scaled equivalent weighting
func-tions are shown in Figure 4b as light curves
centered at the level 4 sample points.

   III. The Laplacian Pyramid

Recall that our purpose for constructing the
reduced image g1 is that it may serve as a pre-
diction for pixel values in the original image g0.
To obtain a compressed representa-tion we encode
the error image which remains when an expanded g1

is subtracted from g0. This image becomes the bot-
tom level of the Laplacian pyramid. The next level
is genera-ted by encoding g1 in the same way. We
now give a formal definition for the Laplacian
pyramid, and examine its properties.

   A) Laplacian Pyramid Generation

The Laplacian pyramid is a sequence of error
images, L0, L1, .. , LN. Each is the difference
between two levels of the Gaussian pyramid. Thus:

for O    <    l < N           (3)

Ll = gl - EXPAND(gl+1)

= gl - gl+1,1

Since there is no image gN+1 to serve as the pre-
diction image for gN, we say LN = gN.

   Equivalent weighting functions.    The value at
each node in the Laplacian pyramid is the dif-
ference between the convolutions of two Gaussian-
like functions with the original image. Again,
this is equivalent to convolving an appropriately
scaled Laplacian weighting function with the image.
The node value could have been obtained directly by
applying this operator, although at considerably
greater computational cost.

Just as we may view the Gaussian pyramid as a
set of low-pass filtered copies of the original
image, we may view the Laplacian pyramid as a set
of band-pass filtered copies of the image. The
scale of the Laplacian operator doubles from level
to level of the pyramid while the center frequency
of the pass band is reduced by an octave. These
points are illustrated in Figure 5, which shows the
equivalent Laplacian weighting functions at three
successive levels of the pyramid and their Fourier
transforms.
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In order to illustrate the contents of the
Laplacian pyramid it is helpful to interpolate be-
tween sample points. This may be done within the
pyramid structure by Gaussian interpolation. Let
Ll,n be the result of expanding Ll n times using
Fig. 2. Then Ll,l is the size of the original
image. L4,4 for the one-dimensional step image of
Figure 4a is shown in Figure 4c.

   Decoding.    It can be shown that the original
image can be recovered exactly by expanding, then
summing all the levels of the Laplacian pyramid:

g0 = 

l

N

=
∑

0

Ll,l.

A more efficient procedure is to expand LN once,
and add it to LN-1, then expand this image once and
add it to LN-2, and so on until level O is reached
and g0 is recovered. This procedure simply re-
verses the steps in Laplacian pyramid generation.
From Eq. 3 we see that:

gN = LN                            (4)

and for l = N - 1, N- 2, .. , O

gl = Ll + EXPAND(gl+1)

   B) Quantizing the Laplacian Code   
Our objective in constructing the Laplacian

pyramid has been to obtain image data compression
by removing image correlations. Substantial
further compression may be obtained by quantizing
the pyramid node values. Such quantization inevit-
ably intro-duced distortion in the reconstructed
image. However, with judicious design this dis-
tortion may not be disturbing to human observers.

It is known, for example, that humans are more
sensitive to gray level fluctuations in low-fre-
quency components of an image than to high-fre-
quency components (Carlson and Cohen, 1978;
Kretzmer, 1956). Thus we may choose to allocate
fewer quantization levels to L0 than to other
pyramid levels. It is also known that humans are
less sensitive to a given fluctuation in gray level
when it occurs in the neighborhood of a prominent
image feature than when it occurs in isolation
(Netravali and Prasada, 1977). Advantage may be
taken of this perceptual limit-ation by adjusting
the quantization levels adaptively over the image.

In the examples we shall show, three quantiza-
tion levels are used for level zero and five for
the other levels. While adaptive techniques can be
efficiently incorporated in the pyramid structure,
we have not done so in these examples.

Let Cl(ij) be the result of quantizing Ll(ij).
We have adopted the following simple (and non-
optimal) quantization policy:

+A if L0(ij)    >    +T
0 if -T < L0(ij)    <    +T          (5)
-A if L0(ij)    <    -T.

At level l, 0 < l < N

2A  if  2T      <    Ll(ij)

A   if  2T/3    <    Ll(ij) < 2T

0   if -2T/3 < Ll(ij) < 2T/3

-A  if -2T   < Ll(ij)    <    -2T/3

-2A if         Ll(ij)    <    2T

Nodes at level N are always positive. For
simplicity we say CN(ij) = LN(ij).

   Summary       of the       coding and decoding procedures.   
Figure 6 is a flow diagram for Laplacian pyramid
coding. The first step, shown on the far left, is
bottom up con-struction of the Gaussian pyramid
images g0, g1, …, gN (Eq. 1). The Laplacian pyra-
mid images L0, L1, …, LN are then obtained as the
difference between successive Gaussian levels   
(Eq. 3). These are quantized to yield the com-
pressed code represented by the pyramid of values
Cl(ij) (Eq. 5). Finally image reconstruction
follows expand and sum procedure (Eq. 4) using C
values in the place of L values. Here we desig-
nate the reconstructed image by r0.

   IV. Experimental Results and Discussion

Figure 7 illustrates the Laplacian pyramid
operation. The original image (lower left)
measures 97 by 97 pixels, and is represented by 64
gray levels.

The bottom row of Figure 7 shows the image
blurred at successively higher levels of the
Gaussian pyramid. Each level has been expanded    
to 97 by 97 pixels. The top row shows the cor-
responding contents of the Laplacian pyramid.
Again each level of the Laplacian is the difference
between levels of the Gaussian. Conversely, each
Gaussian level is equal to the sum of all Laplacian
images at the same level and above. Thus, reading
the bottom row from right to left one can see the
images sharpen as finer and finer Laplacian images
are added to the sum, until finally the original
image is reconstructed. Figure 7 involves no
quantization, so the reconstruction is perfect.

The top row of Figure 8 shows the effects of
quantization (Eq. 5) on the Laplacian pyramid.   
The bottom row of Figure 8 shows the result of
image reconstruction from the quantized Laplacian
pyramid code. A careful comparison of Figures 7
and 8 will reveal some changes in contrast. How-
ever no disturbing artifacts have been introduced
by quantization which might interfere with human
perception.

We may now compute the image data compression
obtained through quantization alone. This may be
specified as the number of bits of information
needed to represent the com-pressed code for each
pixel in the original image. Suppose there are P
pixels in the image. There will then be P nodes   
in the zero level array of the C pyramid. Level 1
will have P/4 nodes, level 2 will have P/16, and
so on. The total number of nodes excluding level

{c0(ij) =

{Cl(ij) =
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zero is P/3. For each node in level 0 we need to
specify one of three gray levels. Assuming all
values are equally likely we require at least log23
bits. Nodes in higher levels require log25
bits, since they may assume any of five values.
The total num-ber of bits per pixel is given by
(Plog2 3 + P/3 log2 5)/P or 2.36 bits per pixel.
This figure does not include substantial further
reductions which may be obtained with variable
length Huffman coding and adaptive techniques.
Nodes in higher levels require log25.

It should be observed that the Laplacian
pyramid code is particularly well suited for pro-
gressive image transmission. In this type of
transmission a coarse rendition of the image is
sent first to give the receiver an early impression
of image content, then subsequent transmission pro-
vides image details of progressively finer resolu-
tion (Knowlton, 1980). The observer may terminate
transmission of an image as soon as its contents
are recognized, or as soon as it becomes evident
that the image will not be of interest. To achieve
progressive trans-mission, the top-most level of
the pyramid code is sent first, and expanded in the
receiving pyramid to form an initial very coarse
image. The next lower level is then transmitted,
expanded, and added to the first. and so on. At
the receiving end, the initial image appears very
blurry, but then comes steadily into "focus." This
progression is illustrated in the lower row of
Figure 8, from right to left. Note that while 2.4
bits are required for each pixel of the full
transmission (left-most bottom image, Figure 8)
less than a third of these, or 0.77 bits, are
needed for each pixel of the previous image (second
from left, Figure 8), and 0.19 bits for the image
previous to that (third from left).

Finally, it should be observed that the La-
placian pyramid encoding scheme requires relatively
simple computations. The computations are local
and may be performed in parallel, and the same
computations are iterated to build each pyramid
level from its predecessor. We may envision per-
forming Laplacian coding and decoding in real time
using array processors and a pipeline architecture.

An additional benefit stressed in the intro-
duction is that in computing the Laplacian pyra-
mid, one automatically has access to bandpass
copies of the image. In this representation    
image features of various sizes are enhanced and
are directly available to image processing and
pattern recognition.
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Fig. 1. Graphical representation of Gaussian
pyramid construction.

Fig. 2. Equivalent weighting functions at levels 1,
2 and 3. These converge to the function
shown below.
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Fig. 3. Equivalent weighting functions for  a
= 0.5, 0.4 and 0.3.

Fig. 4. Laplacian weighting functions and their
Fourier transforms.

Fig. 6. Flow diagram for Laplacian coding.Fig. 5. One-dimensional step function and its level
4 Gaussian and Laplacian representations.

Fig. 7. Laplacian and
Gaussian images
before quanti-
zation

Fig. 8. As in Fig. 7,
after quanti-
zation.
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