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1 Introduction

We have derived a novel approach to the detec-
tion and recognition of human gait. In gait de-

tection, we �nd a spatiotemporal pattern that
signals the presence of a walking person. In gait

recognition, we seek to identify the individual
who is walking. It is known that humans can
detect and recognize gait with reduce spatiotem-
poral sequences (such as moving light displays)
[3, 10], and we would like to give similar capa-
bilities to machines.

Any reasonable approach to the interpretation
of human motion must impose a model of a hu-
man and explain how visual observations are to
be �tted to the model. Model recovery is di�cult
for a number of reasons. As with most object
model recovery, this process should be insensitive
to lighting, position, and size. In modeling hu-
mans, the recovery process should not be sensi-
tive to clothing or any other features speci�c to a
particular individual. Furthermore, unlike most
objects, the human body is composed of a large
number of parts which can move non-rigidly with
respect to one another. Since only some of the
parts are visible at any given time, any approach
that attempts to recover a full three-dimensional
model will have considerable di�culty de�ning
the position of occluded body parts. Some make
the problem more tractable by interpreting mo-
tion with marked feature points [19, 12, 13, 1, 4].

Recovering these features to these models is not a
trivial task, and there have been several attempts
to recover models from real imagery, each with
a di�erent goal [7, 8, 16, 18, 17, 14, 5, 6, 15, 20].

2 Overview

Our approach to human motion analysis takes a
novel approach to model recovery, based on the
observation that walkers generate special signa-
tures in space-time. We analyze the patterns and
use them to estimate the parameters of a simple
stick-�gure model.
Figure 1 shows a image sequence cube of a

frontoparallel walker. This \cube" is formed by
stacking each of the frames in an image sequence
one right after another. An XT-slice of the cube
near the walker's ankle reveals a unique braided
signature for walking patterns. Figure 2 shows
an XT-slice obtained near the walker's head; the
XT-slice indicates that the head undergoes pure
translation during normal walking. Figure 3
shows the walker's two legs criss-crossing over
one another as the walker walks from left to the
right. These braided patterns are generated by
all human walkers. Figure 4 shows three addi-
tional image sequence cubes for di�erent people
and di�erent locations.
The approach we take to detect gait is to �nd

translating blobs in image sequences, and test if
the XT-slice of the lower half of the blob con-
tains a gait signature. If a signature exists, one
can be reasonably certain that a human walker
generated such a pattern. The algorithm can
then proceed to model the walking pattern of
the individual.
The approach we take to model gait is to re-

cover a set of contours for these XT-slice signa-
tures. We recover not just the spatiotemporal
edges for the XT-slice taken at the ankle, but
for all XT-slices in the translating blob, e�ec-
tively tracking the contours of the walker as he
walks in space-time. Given these contours, it is
fairly straightforward to produce a stick model
of a person. And, from a stick model of an indi-
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Figure 2: XT-slice of image sequence near head.

Figure 3: XT-slice of image sequence near ankle.

vidual's walk, we can try to recognize the indi-
vidual.

We have been able to recognize gait from im-
age sequences with a set of reasonable assump-
tions: (1) camera is �xed (2) the walker is walk-
ing at roughly constant speed (3) the walker
is walking roughly frontoparallel relative to the
camera (4) the walker is not camou
aged, or car-
rying anything that would obscure his braided
gait pattern.

The overall scheme is shown in Figure 5.
Roughly, the algorithm is as follows:

1. Gait detection. An image sequence may or
may not contain a human walking. The
frontoparallel walker can be coarsely mod-
eled as a translating rod. If we can �nd
rod-like translating objects, then we can
test if the lower half of the object con-
tains a braided walking pattern. Because
the braided walking pattern is structured,
we can use template matching for coarse
recognition. If the template match is not
a reasonable �t, the translating blob is not
a walker. Otherwise, template matching re-
sults in two template signals, one signal rep-
resenting the x-coordinate of the center of
the left leg and another signal for the center
of the right leg. See Figure 9 for an template

overlaid on a braided pattern.

2. Body tracking. Once gait has been detected,
we recover the frontoparallel walker's body
contours with \snakes"[9]. Snakes are used
to recover the four spatiotemporal edges
of the braided pattern using the template
match as a coarse guess. Figure 10 shows
four recovered spatiotemporal edges over-
laid on the XT-slice. The spatiotemporal
edges recovered at the ankle are used to re-
cover spatiotemporal edges at other heights.
The end result is that the snakes accurately
recover the moving contour of a person over
time. See Figure 12 for the snake output of
an image sequence.

3. Gait modeling. The recovered body con-
tours are used to build a stick model of
the walker. These four contours are av-
eraged into two skeletons, and snakes are
used to obtain re�ned estimates of the spa-
tial positions of the hip, knee, and ankle.
Line-�tting operations between these posi-
tions yield four angle signals for an image
sequence. Figure 13 shows an example of
a body contour �t; Figure 14 shows an ex-
ample of one initial skeleton �t; Figure 15
shows a �nal skeleton �t; Figure 16 shows
a stick model �t, for just one frame in an
image sequence.

4. Gait recognition. The angle signals that
de�ne the stick model of the walker, such
as those shown in Figure 17, are classi-
�ed with a table of previously observed gait
signatures. A standard k-nearest neighbor
approach is su�cient to obtain recognition
rates well above chance performance.

We construct a �ve-stick model of a walker
through spatiotemporal analysis. This is not all
of the information there is to gait. The free
motion of the arms, the head, and feet are not
modeled. This information cannot be recovered
through direct spatiotemporal analysis, unlike
analysis of the the braided pattern near the legs.
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Figure 1: XYT Image sequence volume of a frontoparallel walker, sliced at the ankle. This is
obtained by stacking frames of an image sequence to form a cube, where t is out of the page.
Notice braided pattern in the XT-slice. A shoe appears occasionally at this particular height.

However, with the information that can be recov-
ered, we show that there is su�cient information
to obtain promising recognition rates.

We also obtain non-gait information, which if
processed further, could be used for other sources
of recognition information. The stick length ra-
tios to the feature vector and the body contours
themselves give considerable form information.
One might be use such information to recognize
men from women, or distinguish overweight peo-
ple from the normal.

We now describe the algorithm in more detail.

3 Gait detection

Gait detection is solved by �nding translating
objects in an image sequence and testing if they
contain a braided pattern in the lower half of
the translating object. Moving objects are high-
lighted using a change detection operation be-
tween each image and the background. All mov-
ing objects will be highlighted in the XYT image
cube; translating frontoparallel walkers form a

plane in the XYT image cube, while XT-slices
near the head reveal a line. One reason for
this approach is that standard optical 
ow al-
gorithms fail in regions where there are multi-
ple motions, occlusion, and non-rigidly moving
areas; many other human body tracking e�orts
use a change detection operation as well to by-
pass these problems[18, 7, 17, 16]. The constant
background assumption employed here need not
be so strong. A background appears as vertical
stripes in an XT-slice. If the background is in
motion, then the background will appear as ori-
ented stripes in the XT-slice. Any scheme which
is able to estimate background motion will be
able to shear the XT-slice as if the background
was constant.

The speci�c change detection algorithm we use
transforms an n-frame image sequence I(x; y; t)
into another image sequence O(x; y; t) by �rst
computing a background B(x; y) using median
�ltering and with that a variance V (x; y). These
are used to compute a new \change detected"
image sequence which e�ectively highlights sig-
ni�cant deviations from the background. One
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Figure 5: Gait information processing architecture.

can take a slice of the O(x; y; t) cube to obtain
change-detected XT-slices. The change detec-
tion algorithm run on the two images shown in
Figure 2 and Figure 3 results in images shown in
Figure 6 and Figure 7. Using robust statistics,
one can recover the parameters which de�ne the
plane in XYT, or equivalently, the line of the XT-
slices near the head. However, since we only had
one walker in our image sequences, a simple re-
gression technique was su�cient. The slope and
intercept of the line in the XT-slice correspond
to the walker's speed v and initial position x0.

In order to detect that the translating object
is a walker, we need to decide whether the XT-
slice signature in Figure 7 is a braided pattern.
Because the data is quite structured, we can cor-
relate a small number of templates to the po-
tential braided pattern. The template model is
composed of three variable parameters, an am-
plitude A, a period T , and a skew p, in addi-
tion to the �xed parameters v and x0. The tem-
plate model is diagrammed in Figure 8, and is
essentially two signals, l(t) and r(t), which can
be correlated with each change-detected image
O(x; t) with a standard correlation measure. The
best template match is found by searching for
the maximum correlation over a small number of
amplitudes, periods, and skew parameters. The
range of amplitudes (A) that should be tested
depends on the stride length and the distance of
the walker to the camera. The range of periods
(T ) that should be tested depends on the walk-

ing speed of the person, the stride length, and
the length of walker's body parts. If the best
correlation is low, there is not a braided pattern,
so we can reject the hypothesis that the translat-
ing blob is a walking person. If the correlation is
high, then there is probably a braided pattern,
so we may continue processing. The template
match for the ankle XT-slice is shown in Fig-
ure 9. These two signals l(t) and r(t) yield a
rough estimate of the centers of the both ankles
as a function of time. Templating matching is
done only once in processing an image sequence.

4 Body tracking

Initial snaking on XT-slices. Once we have de-
tected a human gait pattern, we re�ne our rough
estimate of the walker's pattern with \snakes"[9].
Snakes are splines which possess an internal en-
ergy, de�ned by their con�guration, and an ex-
ternal energy, de�ned by an image energy func-
tion. Given an initial list of points that de�ne a
snake, the list of points will \climb" to the local
maxima in the energy function. The two sig-
nals obtained from the template match are used
to initialize two snakes, l(t) and r(t); The en-
ergy function used is just the change-detected
XT-slice, i.e. the one shown in Figure 7. If the
template match yields a correct answer, using
that energy function attracts both snakes to the
center of each ankle. Letting the snakes settle on
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Figure 4: Three additional image sequences of
frontoparallel walkers. Again, notice braided
pattern in the XT-slice near the ankle in each
image sequence.

Figure 6: XT-slice near head run through a
change detection operation.

Figure 7: XT-slice near ankle run through a
change detection operation.

x0

T
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p

l(t)

r(t)

slope v

Figure 8: Template model used on ankle XT-
slice. Template has three varying parameters (A,
T and p) and two �xed parameters (x0 and v).
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Figure 9: Ankle XT-slice, with template match
signals overlaid in white. Note that there are two
signals l(t) and r(t) which de�ne each template.

such an energy function for both signals results
in a snake �t as shown in Figure 10. In doing
so, we re�ne our estimate of the centers of both
ankles.

However, we wish to recover the bounding con-
tours of the body. Each snake is split up into
two new snakes, for a total of four snakes. Two
of them are designed to track the left leg; two
of them track the right. This is achievable by
splitting the two snakes into four and attract-
ing snakes to the positive and negative blurred
spatial derivative of the change detection algo-
rithm output, i.e. if l(t) and r(t) represent the
results of the template match on image O(x; t),
then ll(t) = l(t) and rl(t) = r(t) use an energy
function gaussian(x)�derivative(x)�O(x; t) and
rl(t) = l(t) and rr(t) = r(t) use an energy func-
tion �gaussian(x)�derivative(x)�O(x; t). Fig-
ure 11 shows the four recovered spatiotemporal
edges.

Body contour following. Since the body is spa-
tially contiguous, the XT-slice at one height is
very similar to XT-slices at nearby heights. It
follows that the spatiotemporal edges at one XT-
slice are similar to spatiotemporal edges at an-
other. Thus the spatiotemporal edges recovered
at one height can be used as an initial con�gu-
ration for snakes at a nearby XT-slice. In this
fashion the whole body contour can be recovered,
from head to toe. So, we recover four spatiotem-
poral edges as a function of height (y), repre-
sented by ll(y; t), lr(y; t), rl(y; t), and rr(y; t).
Tracked body contours are shown in Figure 12a.
Near the hip, two pairs of snakes should merge

Figure 10: Using the template match as a initial
position for the snake, snakes re�ne the estimate.
This yields the centers of both ankles as they
move over time. Resulting snakes are shown in
white.

Figure 11: By attracting the snakes to the
positive and negative spatial derivatives of the
change detection output, we obtain the four spa-
tiotemporal edges corresponding to the front and
back of each leg.

ideally, so computing four snakes above torso is
not necessary.

Upsampling body contours. All the processing
described thus far was done on a low-resolution
image sequence, obtained by downsampling the
original image sequence twice. It is straight-
forward to upsample the contours recovered at
a lower scale; assuming a factor of k between
scales, we obtain four new spatiotemporal edges
at each height with: ll2(y; t) = kll(

y

k
; t), rl2(t) =

krl2(
y

k
; t); rl2(t) = krl(

y

k
; t) rr2(t) = krr(

y

k
; t).

The upsampled contours give an estimate of the
contour at each y location at a higher resolution.
These are re�ned, just as before, with snakes
from the height y of the head to the height y

at the toe. Each upsampled contour is used
as an the initial con�guration for a snake; the
image energy function used is merely the posi-
tive (for ll2(y; t) and rl2(y; t)) and negative (for
lr2(y; t) and rr2(y; t)) blurred spatial derivative
of the change detection algorithm output. Since
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we have estimates for each XT-slice from a lower
resolution, processing can occur in parallel for
each y location. The results of processing on
higher scales are shown in Figure 12b,c.

5 Gait modeling

Figure 13 shows the body contours overlaid on
one of the middle frames of the image sequence.
In order to recover exact locations of the head,
the hip joint, the two knee joints, and two ankle
joints accurately in each frame, more processing
is required. A variety of algorithms can be imag-
ined that work from these contours.

The one that we use is as follows. Average the
four left and right body contours to form two
\skeletons." Figure 14 shows one skeleton over-
laid on one frame from the image sequence. To
recover angle signals, we perform line-�t oper-
ations on the skeleton at appropriate locations.
Which locations should we use? Since we know
roughly where the walkers head and toe are,
and since humans have knees, hips and ankles
at predictable locations, we can perform line �ts
between heights where the hip probably is and
where the knee probably is to recover upper leg
angle information, and likewise for the lower leg
angle information. This recovery is less accurate
when the hips, knees and ankles are not where we
expect them to be. Our solution is to do another
snake operation in XY for each frame in the im-
age sequence, using change detection outputs as
energy functions again. Such an energy function
encourages the snakes to climb to the middle of
the body. We know that there is a a second-order
discontinuity at the hip, knee, and ankle. Since
we have the 
exibility in the snake algorithm
to set �rst and second order discontinuities1 , we
can set the spline to be second-order discontinu-
ous at those points using the coarse head and
toe locations and a simple height model of a
human. The snake points are free to move in
x and y, so the bends of the hips, knees, and

1These are alpha and beta in the original paper.

Figure 13: One frame from a body-tracked image
sequence, with the four recovered body contours
for this particular frame overlaid in white.

Figure 14: The four body contours are averaged
into two skeletons, shown overlaid in white.

ankles are free to move about. No part of the
snake should be outside the walker's body. Fig-
ure 15 shows how the snake �t changes. We
may wish to stop with these six coordinates, ob-
tained by processing each frame: (xhead; yhead),
(xhip; yhip), (xknee1; yknee1) and (xankle1; yankle1),
(xknee2; yknee2) and (xankle2; yankle2). However,
we found that using these six coordinates to do
line-�ts yields much better data than just using
these six coordinates. Figure 16 shows the re-
covered stick model for a particular frame.

6 Gait recognition

The stick model recovered is merely four angle
signals that change as a function of time. Upper
leg and lower leg angle signals recovered from
one image sequence are shown in Figure 17. As
expected, the signals are roughly periodic, and
left and right leg signals are out of phase.

For recognition of gait patterns at di�erent
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Figure 12: Body tracking at all scales. Snake outputs at all XT-slices and all y values are upsampled
and used as initial snake values at higher resolution. (a) Upper left: Body contours recovered for
a low resolution image sequence obtained by recovering spatiotemporal edges of each XT-slice. (b)
Upper right: body contours recovered for an image sequence at a higher resolution, obtained by
running snake algorithm on upsampled contours from lower resolution image sequence. (c) Bottom:
Body contours for image sequence at highest resolution.
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Figure 15: The skeleton model is re�ned us-
ing snakes, with second order discontinuities in-
serted at the hip, knee, and ankle. The re�ned
skeleton for a particular time instant is shown in
white.

Figure 16: Simple line �tting operations generate
a �ve-stick model. The recovered stick model for
a particular time instant is overlaid in white.
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Figure 18: Upper (shown at top) and
lower (shown at bottom) leg gait signals (40-
dimensional vector) for �ve walkers. (SI - solid,
SAN - dashed, RWP - plusses, AJA - circles,
LWC - Xs)
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walking speeds, some time-warping of these four
walking signals is necessary. Data used for
recognition were extracted by: (a) �nding zero-
crossings of the derivative of one of the lower
leg angle signals; (b) choosing only the zero-
crossings with a negative derivative, and using
these as indices to copy signal data of both the
lower leg signal and the upper leg signal into two
vectors; (c) linearly interpolating these two vec-
tors, and joining them to a produce a �xed length
vector; (d) walkers walking from right to left had
this vector multiplied by -1.

We ran the entire algorithm on 24 di�erent
image sequences containing frontoparallel walk-
ers. Four were of AJA, six were of LWC, four
were of RWP, six of SAN, and six of SI. Image
sequences were taken indoors at three di�erent
locations at three di�erent times in the day, sep-
arated by roughly an hour. Averaged upper and
lower leg vectors for the �ve walkers (i.e. aver-
aging all the vectors obtained from a particular
walker into one vector) are shown in Figure 18.
To see the features more clearly, refer to Fig-
ure 19 to observe how gait signals deviate from
the mean gait signal of all individuals.

Using a simple recognition technique, k-
nearest neighbors with Euclidean distance mea-
sures, worked reasonably well. It runs as follows.
To classify a particular image sequence with ex-
tracted gait vectors v1, v2, ... vm with a table
of previously classi�ed walks w1, ... wn, classify
each vi independently, and classify the image se-
quence as belonging to the class chosen the most
often out of all the vectors vi. Each vector vi
is classi�ed by computing a Euclidean distance
Dij = jjvi�wj jj

2 between vi and each walk wj in
the dictionary; the most common class in the k

smallest distances is chosen as the classi�cation
of the vector.

Nineteen of the twenty four image sequences
were correctly recognized with with k = 5, and
17 or 18 were recognized with k = 3; 4; 6. Since
chance recognition rate is 20%, a recognition rate
of 79% is promising. It is di�cult to make a
scalability claim of the recognition rates without

accumulating and measuring more data. Natu-
rally, with more measurements of each walker's
walking pattern, accuracy will increase; with
more walkers to choose among, however, accu-
racy will decrease. However, it is unrealistic
to expect near-perfect gait recognition perfor-
mance. Instead, gait recognition will be most
promising when combined with other recognition
techniques.

7 Conclusion

We show a method for recovering a stick model of
a human by spatiotemporal analysis of gait pat-
terns. The initial model of the walker is simple;
a walker is a translating blob which has braided
spatiotemporal patterns in the lower half of his
body. By recognizing these spatiotemporal sig-
natures, we can impose a model for subsequent
spatiotemporal analysis. This allows us to re-
cover the spatiotemporal edges of the walker.
This recovery process yields promising results in
a new recognition problem.
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