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Transparent Motion Perception as Detection of Unbalanced Motion

Signals. Ill. Modeling

Ning Qian,® Richard A. Andersen, and Edward H. Adelson
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

In the preceding two companion articles we studied the
conditions under which transparent motion perception occurs
through psychophysical experiments, and investigated the
underlining neural mechanisms through  physiological
recordings. The main finding of our perceptual experiments was
that whenever a display has finely balanced motion signals in all
local areas, it is perceptually nontransparent, and that
transparent displays always contain motion signals in different
directions that are either spatially unbalanced, or unbalanced in
their disparity or spatial frequency contents. In the physiological
experiments, we found two stages in the processing of
transparent stimuli. The first stage is located primarily in area V1.
At this stage motion measurements are made and V1 cells
respond well to both the balanced, nontransparent stimuli and
the unbalanced, perceptually transparent stimuli. The second
stage is located primarily in area MT. MT cells show strong
suppression between opposite directions of motion. The
suppression for the unbalanced, transparent stimuli is
significantly less than that for the balanced, nontransparent
stimuli. Therefore, the activity in the second, MT stage correlates
better with the perception of motion transparency than the first,
V1 stage, which does not distinguish reliably between
transparent and nontransparent motion.

The above experiments suggest a two-stage model of motion
perception with a motion measurement stage in V1 and an
opponent-direction suppression stage in area MT. In this article
we explicitly test this model through analysis and computer
simulations, and compare the response of the model to the
perceptual and physiological results using the same balanced
and unbalanced stimuli we used in the experiments. In the first
stage of the computational model, motion energies in different
spatial frequency and disparity ranges are extracted from each
local region. Similar to V1, this stage does not distinguish
between the balanced and unbalanced stimuli. In the
subsequent stage motion energies of opposite directions but with
same spatial frequency and disparity contents suppress each
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other using subtractive or divisive inhibition. This stage responds
significantly better to the transparent stimuli than to the
nontransparent ones, in agreement with MT activity.

[Key words: motion transparency, motion energy models,
stereopsis, motion-stereo integration, spatial frequency, com-
puter modeling]

Motion is arich source of various types of useful information.
For example, it allows us to determine three-dimensional
structures of moving objects, and to segment a complex scene
into its meaningful parts (see Nakayama, 1985, for a review).
The task of motion detection is relatively easy when there is
only a single point-like object moving on ablank background.
Our visual system, however, has to handle (and is able to handle)
much more complicated situations. For instance, when an object
with differently oriented boundaries is moving in a certain
direction, it generates local motion vectors that are perpendicular
to the boundaries (the "aperture problem"). These vectors may
not be pointing in the true direction of motion. Even more
complex is the situation where there are partial occlusions and
translucent surfaces in a scene with moving objects. In these
cases the visual system has to represent more than one motion in
the same part of space—the problem of transparent motion
perception. A laboratory demonstration of motion transparency
uses two independent sets of random dots moving in opposite
directions in the same part of avideo monitor. Two transparent
surfaces, one defined by each set of dots, are seen as continuously
and independently moving across each other.

In the first of this set of three studies, we performed psycho-
physical experiments for determining the conditions under which
transparent motion perception occurs (see preceding companion
article, Qian et al., 1994). We found that displays with locally
well-balanced motion signals in opposite directions are percep-
tually nontransparent. The transparent displays, on the other
hand, contain locally unbalanced motion signals in different
directions. Furthermore, if the two components of the spatially
balanced displays are at different depths, or contain very different
spatial frequency contents, the displays appear transparent.
These displays contain motion signals that are unbalanced in
binocular disparity or spatial frequency. Based on these results,
we proposed that local suppression among different directions of
motion within each disparity and spatial frequency channel could
be the mechanism for distinguishing transparent displays from
nontransparent ones. Nontransparent displays presumably maxi-
mize the suppression in al frequency and disparity channels and
therefore evoke relatively weak responses.

We aso investigated motion transparency physiologically
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Figure 1. The motion energy model used in most of our simulations for
explaining the perceptual difference of transparent and nontransparent
displays. Motion sensitivity is generated by the spatiotemporally oriented
filters shown schematically in the square boxes. There are two stages in the
model. The first stage computes unidirectional motion energies by squaring
and then summing the outputs of a quadrature pair of oriented filters. In the
second stage, motion energies from opposite directions suppresses each
other. Subtractive inhibition is indicated in the figure, but we have also
considered divisive inhibition (see text).

through single-unit recordings from V1 and MT (see preceding
companion article, Qian and Andersen, 1994). We found that the
directionally selective V1 cells responded quite well to both
transparent and the nontransparent stimuli. On the average, they
could not reliably distinguish the two types of displays. On the
other hand, MT cellsS responses to displays with two
components moving in opposite directions are strongly
suppressed in comparison to their preferred direction responses.
More importantly, the suppression is significantly higher (or
the response weaker) for the nontransparent stimuli than for the
perceptually transparent ones.

Our physiological experiments indicate a two-stage model of
motion perception with a motion measurement stage in V1 and
an opponent-direction suppression stage in area MT. Our
psychophysical experiments further suggest that the suppression
in the second stage should be spatial frequency and disparity
specific. In this article, we present analysis and computer
simulations using such a two-stage model in order to demonstrate
more quantitatively that a disparity- and spatial frequency-
specific suppressive mechanism can indeed account for the
difference in the perceptual transparency of our displays.

We use motion energy models (Adelson and Bergen, 1985;
Watson and Ahumada, 1985) and their extension to disparity
sensitivity (Qian, 1994) for motion measurements in the first
stage. Many models for biological motion processing have been
proposed. We choose motion energy models because of their
biological plausibility. Although certain versions of this class
of models have been shown to be equivalent to the Reichardt
motion detectors (Reichardt, 1961; Adelson and Bergen, 1985;
van Santen and Sperling, 1985), the unidirectiona motion
energy stage of the model is not equivalent to any stage in the
Reichardt detector (Emerson et al., 1992). There is physiological
evidence suggesting that directionally selective cells in the
primary visual cortex behave as if they compute unidirectional
motion energies (Reid et al., 1987; McLean and Palmer, 1989;
Snowden et al., 1991; Emerson et al., 1992). For the second,
suppression stage of the model, we consider both subtractive
(Adelson and Bergen, 1985) and divisive (Snowden et al., 1991;
Heeger, 1992) types of inhibition among different directions of
motion.

We first apply the model to those displays without disparity
cues. The spatial frequency effect can be explained by the energy
models since energy detectors naturally contain frequency
selectivity. We then consider the effect of binocular disparity.
Since standard energy models do not contain disparity tuning, we
have recently developed a model for bhiological stereopsis and
combined it with motion energy models into a common
framework (Qian, 1994). We show here through computer
simulations that the extended model can account for the
contribution of disparity to motion transparency.

Preliminary versions of the results presented here have
appeared previously (Qian et al., 1991, 1992).

Analysis and Simulations

Weused the version of the energy models proposed by Adelson
and Bergen (1985) in our analysis and simulations. An essential
idea behind the model is that motion of an object through space
over time can be described by an orientation in the
spatiotemporal space (Fatale and Poggio, 1981; Adelson and
Bergen, 1985). The model uses spatiotemporally oriented linear
filters to detect motion. The linear mechanism for generating
motion sensitivity is supported by recent intracellular studies of
directionally selective cells in cat visual cortex (Jagadeesh et al.,
1993). The outputs of two linear filters with 90° phase difference
are squared and then summed to form the phase-independent
unidirectional motion energy detector. Such a detector simply
measures the Fourier power within a certain spatiotemporal
frequency window specified by its parameters.

We will examine whether our psychophysical and physiologi-
cal results can be explained by assuming a suppressive stage in
the motion pathway a which motion signals in different
directions from each small region inhibit each other. Different
suppression mechanisms have been proposed in the past. They
include subtractive opponency (Adelson and Bergen, 1985) and
divisive normalization (Adelson and Bergen, 1986; Snowden et
a., 1991; Heeger, 1992). While there are important differences
between these two mechanisms (see Divisive inhibition, below),
our psychophysical experiments are not designed to differentiate
between them. In fact, both mechanisms can explain our results
well. A schematic drawing of the motion energy model with
subtractive inhibition is shown in Figure 1.

Wenow give an explicit description of our model for motion
transparency. We assume that for each spatial location there is a
population of motion energy detectors tuned to different ranges
of spatiotemporal frequency (and thus to different directions and
speeds of motion) and disparity. To the first approximation, this
stage can be identified with V1 cells. At the second (suppressive)
stage either the opponent energy (with subtractive inhibition) or
the normalized energy (with divisive inhibition) is computed
within each spatial frequency and disparity channel from the
initial motion energy measurements. We propose that this
second stage is performed by subunits in MT cells' receptive
fields. We hypothesize that if a visual display generates large
energies for both left and right directions at the suppression
stage and if these energies in different directions are spatially
mixed, the pattern is perceptually transparent. Note that for
patterns with a richer spectrum of frequencies, more
unidirectional energy detectors will be activated. Other things
being equal, these patterns will activate more opponent or
normalized energy detectors and will therefore be more likely to
appear transparent. This is consistent with our psychophysical
observation that random dot patterns look transparent over a



wider range of parameters than randomly spaced parallel line
patterns and that counterphase gratings and square wave gratings
look nontransparent over a wider range of parameters than equally
spaced line patterns (Qian et al., 1994).

In the above description, we assume that motion suppression
occurs at the subunit level of MT cells. For completeness we further
propose that al subunits of an MT cell have similar tuning
properties and that the overall response of an MT cell is equa to
the summation of the thresholded output of all its subunits. This
step could be viewed as a part of the spatial integration process
that may be responsible for the coherent percept of transparent
motion (see Discussion), and will be explored in our future
publications. For our present purpose of explaining the perceptual
differences of our psychophysical stimuli, the activity at the MT
subunit level is sufficient.

For simplicity, we first consider the case of one spatial
dimension and no disparity, and use subtractive inhibition for
suppression. We use Gabor filters for spatiotemporal orientation
detection. These filters correspond to V1 simple cell. A quadrature
pair of such filters with even and odd phases tuned to leftward (-)
and rightward (+) directions of motion are given by

1 O x* t20
*= ex - os(w, X+ wt) (1)
% 210, 0, pHZJZ ZUEHCS( X D
1 x2  t? 0O,
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where g, and g, determine the widths of the filters in the spatial and
temporal domain, respectively, and w, and ¢, are the central angular
spatial and temporal freguencies. The ratio of the latter two
parameters determines the orientation of the filters in the
spatiotemporal space. All these variables are assumed to be
positive. Also note that the areas under the Gaussian envelopes of
the filters are normalized. This is important for comparing results
from filters of different scales. The responses of these filters to
visual stimuli are given by the convolution operation.

The phase-insensitive leftward and rightward motion energies
for a spatiotemporal pattern f(x,t) are defined as

E'(xt) = [f Og.1* + [f Og, T, ©)
E(xt) =[f Og.]* + [f Og,T", 4

where (0 denotes convolution. Responses at this stage correspond
to directionally selective complex cells. The opponent motion
energy is defined as the difference of the two:

E(xt) = E'(x) — E(x1) )

Under these definitions, positive (negative) opponent energy
indicates the rightward (leftward) motion and a value around zero
means that no motion is detected. Of course, neurons can only fire
positively. In reality, the leftward and rightward opponent motion
energies have to be carried by two different populations of MT
cells with subunits having threshold nonlinearity. It is obvious
that the introduction of opponency will cause substantial
cancellation of motion energies from opposite directions. What we
are interested in here, however, is whether the residual responses
after the cancellation would indeed be quite different for our
transparent and nontransparent patterns. We now make some
explicit calculations and computer simulations for some of these
patterns.
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Counterphase gratings

We start with counterphase gratings, which are composed of two
identical sine wave gratings moving across each other in opposite
directions. Counterphase gratings are perceptually nontransparent.
They can be represented mathematically as

f(xt) =sin(Qx—-Q) +sin(Qx + Q) (6)
whereQ, and +Q, are the spatial and temporal frequencies. Assume
that both Q and Q are positive, then the two terms on the
righthand side of Equation 6 represents two identical sine wave
gratings moving to the right and left, respectively. Asis shown in

the Appendix, the opponent energy for the counterphase grating is
exactly

E,(x) =0, ™
for al (x,t) (i.e., for filters located at any position at any time),
independent of the parameters for the Gabor filters and the grating.
This result explains the lack of transparent motion perception for
counterphase gratings. Note that while it is intuitively obvious
that opponent energy should be small for the counterphase
gratings, the exact null result in Equation 7 is a consegquence of
using quadrature Gabor filters and subtractive inhibition.

Spatial frequency specificity

While two identical sine wave gratings moving across each other
look like flicker, two sine gratings with very different spatial
frequencies are perceptually transparent (Qian et al., 1994). This
suggests that the suppression between different directions of
motion is limited within each spatial frequency channel. The
motion detectors in energy models aready have frequency
selectivity built into it. From the Fourier transformation of the
Gabor filters in Equations 1 and 2, it can be shown that the
frequency responses of these filters are centered around (tw, *w),
with the bandwidth (defined at halfpeak amplitude) along each
dimension equal to

oo ++/2In20
—\/ZInZH

where w and o represent the central angular frequency and Gaussian
width of the given dimension and In stands for natural logarithm.
To model frequency specificity of directional suppression, we
therefore apply opponency only to the two unidirectional motion
energies computed with filters of identical frequency selectivity but
tuned to opposite directions of motion.

We performed computer simulations on a display composed of
two different sine wave gratings with spatial frequencies equd to
15 cycles/degree and 6 cycles/degree, respectively. We also
considered a counterphase grating with spatial frequency equal to 3
cycles/degree for comparison. We used three sets of filters with
spatial frequencies centered around 1.5, 3, and 6 cycles/degree.
They represent three spatial frequency channels. The Gaussian
widths (os) of the filters were 1/3, 1/6, and 1/12 of a degree,
respectively (the actual widths of the filters, defined at the half-
amplitude of the Gaussian envelope, are 0.78°, 0.39°, and 0.20°,
respectively). Under these parameters, the bandwidths of all filters
are 1.14 octaves according to Equation 8. The results of our
simulations are shown in Figure 2. The spatiotemporal
representations of the display composed of two different sine wave
gratings and that of the counterphase grating are shown in Fig-
ure 2, aand b. Figures 2c-h represents the opponent energies from

bw = log, G
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Figure 2. Simulation for a counterphase grating and two sine wave gratings
with different spatial frequencies. All figures are shown in spatiotemporal
space. a and b are the spatiotemporal representations of the two types of
patterns. c-h show the opponent energies in three different frequency
channels for the two patterns, all shown with the same gray scale. Gray
indicates little motion energy and white and black code for rightward and
leftward opponent energies, respectively. See text for the details of the
parameters used.

the three frequency channels for the two types of displays. In this
figure gray indicates little motion energy, and white and black
code for rightward and leftward opponent energies, respectively.
It is clear from Figure 2c-h that while the counterphase grating
gives no opponent motion energy in any of the three channels,
the display composed of two different sine wave gratings
generates rightward opponent motion energy in the high-
frequency channel and leftward energy in the low-frequency
channel. These results correlate well with the observation that
the former is not perceptually transparent while the latter is. If
the inhibition were between the low- and high-frequency
channels, the motion energies in opposite directions would
strongly cancel each other, and the pattern would appear non-
transparent, just like counterphase gratings.

Line patterns

We next turn to the line patterns. Our psychophysical
experiments indicate that over a wide range of parameters,
displays composed of two sets of randomly spaced parallel lines
moving across each other in opposite directions are perceptually
transparent. |f the spacings between every two adjacent lines are

made equal, however, the resulting equally spaced line patterns
are nontransparent.

Two sets of N parallel lines with initial positions x,” and x,” (n
=1,2,... N), respectively, moving in the opposite directions
with speed v, can be represented by

f(x1) = c%[é(x—x: -wt)+o(x-x; +w)]» (O

where &) is the Dirac function and ¢ is a constant with the
dimension of the inverse of length. Assuming that v is positive,
the two terms in the square bracket on the right-hand side
represent lines moving to the right and left, respectively. It can
be shown (see Appendix) that under appropriate assumptions, the
opponent energy for such a line pattern is given by

_ 2
O (x—xn+vt)
xpE-l-H L expt s ——

H Vvioi+o. B

CE N H O (x=x-w) + (x—xp-wt) D
T2 averrad g

El_(x—xn‘ +vt)2 +(x—x;, +vt)zg
expE 2(v’o? +a?) H

m:os[a)x(x,j1 - X, ]} : (10)

where the constant ¢' is equal to ¢%/2m(V’o? + G,7).

The second summation is unlikely to achieve large magnitude
because x —x," —vt and x — x,,;* — vt (and similarly, x —x,” + vt
and x —x,, + vt) cannot both be zero at a given (x,t) for n Z m.
For randomly spaced line patterns the second summation is much
smaller in magnitude than the first for the additional reason that
the cosine terms are equally likely to be positive or negative. We
therefore only need to consider the contribution of the first
summation. The first term in the summation will generate a large
positive contribution to the opponent energy around those
positions in the x-t plane such that x —x," — vt is close to 0, that
is, around the trajectory of each right-going line in the
spatiotemporal space. Similarly, the second term in the first
summation will have a large negative contribution to the
opponent energy when x — x," + vt is very small in magnitude.
These two terms will not sufficiently cancel each other due to the
random location of the lines. There will be both large positive
and large negative opponent energies across the pattern at any
instance of time, indicating both the rightward and leftward
motion (the presence of transparent motion).

For equally spaced line patterns we have

X5 = Xi+ =X, — X =(m-n)Ax, (11)

where Ax is the spacing between two adjacent lines, so the two
cosine terms in the second summation of Equation 10 are equal.
At periodic time intervals, each line in one set is spatially very
close to one, and only one, line in the other set and the two
corresponding terms in both summations of Equation 10 will
strongly cancel each other. This periodic loss of motion signal
helps to explain the oscillatory perception for these patterns.
The above argument is based on the assumption that filters of
reasonable sizes (g, and o) are used. The difference between the
opponent energy of an equally spaced line pattern and that of the



corresponding randomly spaced line pattern certainly depends on
the choice of g, and o,. We consider here two extreme cases. First,
let g, -~ o and g, - o, that is, use extremely wide filters. It is
clear from Equation 10 that the opponent energy E - 0 no
matter whether the lines are equally spaced or randomly spaced,
indicating that both types of patterns should appear
nontransparent. This agrees with our informal observation that a
pattern always become less transparent or nontransparent when
it is viewed with more eccentric part of retina, where the filter
sizes are presumably larger. We next consider the case when the
filters are extremely narrow, that is, o, — 0 and o, - 0. Under this
condition, Equation 10 reduces to

E (xt) = c% [6(x -X' - vt) - 5(x - X, + vt)] (12)

We basically recover the original line patterns with one set of
lines contributing positive opponent energy, and the other
negative energy. Thus, there are motion signals in both
directions even for the equally spaced line patterns, except at the
moment when the two opposite-going components are about to
superimpose. At that time, x," — vt = x, + vt for al n, and the
opponent energy in Equation 12 is 0. This corresponds closely
to what we observed for the equally spaced line patterns when the
number of lines was small and therefore the spacing between
lines was large (increasing the spacing between lines is
mathematically equivalent to reducing o, and o). Physio-
logically, the motion sensitive filters are not arbitrarily large or
small. As aresult, we see randomly spaced line patterns as much
more transparent than the corresponding equaly spaced line
patterns over a range of parameters.

We did computer simulations with randomly spaced and equally
spaced paralel line patterns. In Figure 3, a and b are the
spatiotemporal representations of two such line patterns. Each
figure represents 5° in the spatial dimension and 2.5 sec in the
temporal dimension, respectively. The speed of all the lines is
2°/sec. Since each line is wrapped around when it moves out of
the spatial window, there are 15 lines moving in each of the two
opposite directions at any instance of time for both line
patterns. With these parameters the randomly spaced line pattern
is perceptually transparent while the equally spaced line pattern
is not, according to our psychophysical observations. We used
the same three sets of Gabor filters asin Figure 2. They represent
low-, medium-, and high-frequency channels, or equivalently,
wide, medium, and narrow spatial scales. The central spatial and
temporal frequencies of the medium channel are equa to the
fundamental spatial and temporal frequencies of the equally
spaced line patterns. The opponent energies from the three
channels for the two line patterns are shown in Figure 3c-h.
Again, in this figure gray indicates little motion energy and
white and black code for rightward and leftward opponent
energies, respectively. It is clear that the opponent energy for
the randomly spaced line pattern contains both rightward and
leftward motion signals while that for the equally spaced line
patterns is much weaker. This corresponds well with the presence
and absence of perceptual motion transparency in the two
displays. Also, the way opponent motion energies change across
the three scales of the filters follows what we predicted based on
Equation 10: as the filters get wider, the opponent energies
become weaker. Likewise, as the filters get narrower, the diff-
erence between the two types of patterns becomes smaller, and
the equally spaced line patterns produce some opponent energy.
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Figure 3. Simulation for an equally spaced and the corresponding randomly
spaced parallel line patterns. All figures are shown in spatiotemporal
space. a and b are the spatiotemporal representations of the two patterns.
The total number of black pixelsis exactly the same in these two patterns.
c-h show the opponent energies in three different frequency channels for
the two patterns, all shown with the same gray scale. Gray indicates little
motion energy and white and black code for rightward and leftward
opponent energies, respectively. See text for the details of the parameters
used.

This corresponds well with the perception that as the number of
lines in an equally spaced line patterns decreases, the patterns
become a little more transparent.

Dot patterns

We now consider the paired and the unpaired dot patterns, which
are perceptual nontransparent and transparent, respectively.
Since these dot patterns have contrast variations along the y-
dimension as well as along the x- and t-dimensions, we need
three-dimensional Gabor filters for computing their opponent
energies. As is shown in the Appendix, the results of analysis are
rather similar to those for the line patterns described in the
previous section. The introduction of the y-dimension simply
adds an amplitude term and a phase term to the response for each
dot. There is an additional amplitude term due to the limited
lifetime of the dots. The presence and absence of motion
transparency in paired and unpaired dot patterns could be
explained in a similar way as for the line patterns. For the paired
dot patterns with two dots in each pair having different signs
of contrast (one black, the other white), the results are similar
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Figure 4. Simulation for a paired and the corresponding unpaired dot
patterns. The two columns show the results for the unpaired and the paired
dot patterns, respectively. The three rows represent the spatial distribution
of the opponent energies for the two types of patterns at three successive
time frames. All figures are displayed with the same gray scale. Gray
indicates little motion energy and white and black code for rightward and
leftward opponent energies, respectively. See text for the details of the
parameters used.

because the unidirectional energies do not depend on the signs of
contrast due to the sgquaring nonlinearity. For paired dot patterns
with large vertical offsets, the two dots in each pair will generate
quite different motion energies in opposite directions due to the
y-dependent amplitude term. Their contributions will not cancel
well locally and the patterns will thus appear transparent.

We have carried out computer simulations for the paired and the
unpaired dot patterns. An example is shown in Figure 4. The
simulation was done with a set of filters with central frequency
equal to 2.23 cycles/degree, and Gaussian width 0.1°. Note that in
Figure 4 the two axes of each figure represent two spatial dimen-
sions, instead of one spatial and one temporal dimension as in
Figures 2 and 3. The temporal dimension in Figure 4 is repre-
sented by showing three successive time frames in three rows. It
is clear from the figure that the unpaired dot pattern contains
much stronger leftward and rightward opponent motion energies
than the paired dot patterns, in agreement with our perception.

It is important to note that the Fourier power spectra of the
paired and the unpaired dot patterns are rather similar. This
indicates that the perceptual difference of the two types of
patterns is unlikely to be explained by the motion energy
measurements alone without the introduction of the suppression
stage. We have carried out the Fourier transformation on the
paired and the unpaired dot patterns. For simplicity, we
considered dots moving in the x-dimension and ignored the y-di-

Unpaired dot pattern Paired dot pattern
K
@ |~y L ///\ () [ x)?’* % ;
‘:j\ N o x ® ;
[ & N, X
Stimuli t ."'\‘i - P . t xx 3
N ? SR xE L x
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X X

{c) &

Fourier f
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Figure 5. Fourier transforms of a paired and an unpaired dot patterns. a
and b are the spatiotemporal representations of an unpaired dot pattern and
its corresponding paired dot pattern. The y-dimension is not shown. ¢ and d
are the amplitudes of the Fourier transforms of the two patterns displayed
with the same gray scales. The zero spatiotemporal frequency points are
located at the centers of the diagrams.

mension of the patterns. In Figure 5 a and b, show the
spatiotemporal representations of a paired dot pattern and its
corresponding unpaired dot pattern. The amplitudes of the Fourier
transforms of the two patterns are shown in Figure 5, c and d. The
points with zero spatial and temporal frequencies are located at
the centers of both diagrams. It is clear from these figures that
both patterns have their main Fourier power concentrated along
the two diagonal lines going through the origin. These two lines
are generated by the dots moving in the two opposite directions
of motion (Watson and Ahumada, 1985). If one tries to detect
motion by doing something equivalent to fitting lines (through
origin) to these two spectra (Heeger, 1988; Shizawa and Mase,
1990), then the paired and the unpaired dot patterns will both be
considered transparent by such a procedure. Since perceptually
the unpaired dot patterns are much more transparent than the
paired ones, we conclude that the suppression stage is essential
for determining the perceptual transparency of a display.

Disparity specificity

We showed that the paired dot patterns can be made perceptually
transparent if a certain amount of binocular disparity is
introduced between the dots in each pair (Qian et al., 1994). To
model this interaction between motion and stereo vision, we
need to incorporate disparity sensitivity into the motion energy
model. We have recently developed a model of stereo vision
based on known properties of binocular cells in the visual cortex
and have shown that this model can be naturally combined with
motion energy models (Qian, 1994). Here we show through
computer simulations how the combined model can be used to
explain the effect of disparity on perceptua motion
transparency. Our model assumes that the left and right receptive
fields of a binocular cell are given by
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Figure 6. Simulation for a paired dot pattern with one set of dots moving in
one direction with positive disparity, and the other set of dots in the opposite
direction with negative disparity. The three rows show the spatia
distribution of the opponent energies for the pattern at three successive
time frames. The three columns correspond to the opponent energies in
three disparity channels. All figures are displayed with the same gray
scale. Gray indicates little motion energy and white and black code for
rightward and leftward opponent energies, respectively. See text for the
details of the parameters used.

f ( t) D XZ y2 t2 |:|
X, y,t) = exp - -
! H 202 202 207H
[Gos(w, X + W,y + Wt +q), (13
O x2 yz t2 O
f(xy.t)=exp By
H 207 207 20 H
[os(w, X +w, y+wt+@,). (14)

where 0 and w are the widths of the Gaussians and angular
frequencies along the spatial and tempora dimensions, and ¢ and
@ are the phase parameters. For a stimulus with a constant
disparity D and moving at speed v, and v, along the horizontal
and vertical directions, it can be shown that the energy computed
with a quadrature pair of such filters is approximately

~ M -¢ , w00
E~4p262(oot+wxvx+ooyvy)coszD >t (15)

where &) is the delta function, and p is the amplitude of the
Fourier transformation of the stimulus (Qian, 1994). Equation |5
indicates that the cell is indeed sensitive to both motion and
stereo disparity, similar to some real cortical cells. While w, a,
and « determine the motion selectivity, (¢ — ¢) determines the
disparity sensitivity. The width of disparity tuning (defined at
the half peak amplitude) is equal to

ap="". (16)
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Paired dot
pattern

Flicker
pattern

Unpaired
dot pattern

Figure 7. Opponent energies for the same paired and the unpaired dot
patternsin Figure 4, and the corresponding flicker pattern. Only one time
frame for each spatia energy distribution is shown. All figures are
displayed with the same gray scale. Gray indicates little motion energy and
white and black code for rightward and leftward opponent energies,
respectively. See text for the details of the parameters used.

We can thus explain the effect of both frequency and disparity
cues in our psychophysical experiments by restricting
opponency to unidirectional energies computed with filters with
identical w, «, and « ,and (¢ — @), but tuned to opposite
directions of motion.

We carried out a simulation on a paired dot pattern with one set
of dots moving in one direction with disparity 0.11°, and the
other set of dots in the opposite direction with disparity -0.11°.
The results are shown in Figure 6. Again, the three rows here
represent three successive time frames. The three columns
represent the opponent energies computed with three sets of
filters with their (¢ — @) equa to -2, 0, and /2, respectively.
The central spatial frequency in horizontal dimension, (w/2m),
was equal to 2.23 cycles/degree (or the angular frequency «, equal
to 14.0 radians/degree). With this choice of w, the three sets of
filters have their peak disparity tuning around 0.11°, 0°, and
-0.11°, respectively, and the widths of tuning are 0.22°. We see
from Figure 6 that the leftward and rightward opponent motion
energies are now segregated into different disparity channels.
Unlike the paired dot pattern without disparity shown in Figure
4, b, d, and f; these energies do not cancel each other out. This
accounts for the perceptual transparency of the pattern.

Flicker responses

Since nontransparent patterns such as counterphase gratings and
paired dot patterns look rather like flicker, we also generated a
flicker pattern for comparison. The pattern was derived from the
unpaired dot pattern in Figure 4 by setting the dot speed to zero.
Other parameters including dot lifetime are the same. The
computed opponent motion energy of the flicker pattern,
together with the opponent energies for the paired and the
unpaired dot patterns from Figure 4, are shown in Figure 7a-c .
The opponent motion energy of the paired dot pattern is only
slightly stronger than that of the flicker pattern, and both are
significantly wesker than the opponent energy of the unpaired
dot pattern. These simulations conform to our finding that MT
cells, responses to the paired dot patterns and to the flicker noise
are not significantly different from each other, and that both
responses are significantly weaker than the response to the
unpaired dot patterns (Qian et al., 1994).

Divisive inhibition
We have shown above that simple subtractive inhibition
following motion energy computation can account for our psy-
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chophysical and physiological results on transparent and
nontransparent patterns. Single-unit recordings from behaving
monkeys, on the other hand, indicate that the directional
inhibition in area MT has a divisive component (Snowden et al .,
1991). Heeger (1992) adso demonstrated that divisive
normalization can account for a large amount of psychophysical
and physiological results, some of which are inconsistent with
pure subtractive inhibition. For example, the opponent energy
computed with subtractive inhibition is aways proportional to
the square of stimulus contrast while real visual cells exhibit
contrast saturation. It is therefore important to demonstrate that
our psychophysical and physiological experiments can aso be
explained by divisive suppression.

We have repeated al our simulations described above using
divisive suppression and similar results (not shown) have been
obtained. We considered two different normalization schemes.
The first one normalizes the opponent energy by the static
energy (Adelson and Bergen, 1986):
E*(x,t)—-E (x1)

E°(x,t)+e&
where E*(x,t) and E(x,t) are the left and the right motion
energies, respectively, E°(x,t) is the static energy, and € is a
small number for stabilizing the division. This approach is
closely related to the least-squares method (Lucas and Kanade,
1981) and gradient method (Horn and Schunck, 1981) for
velocity estimation (Adelson and Bergen, 1986; Simoncelli,
1993). It is not surprising that Equation 17 can also explain the
perceptual difference between the transparent and the
nontransparent patterns since it is proportional to the opponent
energy.

The second approach normalizes the output of each
unidirectional energy detector by the sum of the outputs of all
detectors tuned to the same spatial frequency range. For displays
containing only opposite directions of motion, the normal-
ized left and right motion energies within a given frequency band
are

NE(x,t) = 17)

E*(x,t)
E*(xt)+E (xt)+cC

where ¢ represents contributions from filters tuned to directions
other than left and right. This approach is modified from Heeger
(1992), who used the total output of detectors tuned to all
frequency ranges as the normalization factor. We restricted
normalization to be within each frequency channel because our
psychophysical experiments suggest that the suppression is
spatial  frequency specific (Qian et al., 1994). For the
convenience of the description we let ¢ be equa to zero. For the
nontransparent patterns with localy well-balanced motion
signals, E*(x,t) is approximately equa to E'(x,t) in Equation 18
so that the normalized motion energies are very close to 0.5. For
the unbalanced patterns that are perceptually transparent, on the
other hand, there are many locations at which E*(x,t) is much lar-
ger than E*(x,t) or vice versa. The normalized left or right motion
energies at these locations will be close to 1.0. This twofold
difference in normalized energies between the balanced and the
unbalanced patterns could account for the difference in their
perceptual transparency. Notice that this difference cannot be
reduced or reversed by changing the contrast of the patterns
because the normalized energy is independent of contrast. Also
note that the normalized energies of nontransparent patterns are
similar to those of flicker patterns. The latter are also close to

NE*(x,t) = (18)

0.5 since flicker patterns contain equal amounts of left and right
motion energy.

Discussion

We have shown in this article that a motion energy computation
followed by disparity- and spatial frequency-specific suppression
among different directions of motion can indeed explain the
perceptual difference of the transparent and nontransparent
displays used in our psychophysical experiments. Specifically,
we found that the nontransparent displays generate relatively
weak opponent or normalized energies at the suppression stage.
In fact, these energies are not higher than those generated by
flicker patterns. On the other hand, the perceptually transparent
displays generate much stronger opponent or normalized motion
energies along more than one direction of motion. These
energies in different directions are located either in different but
mixed small areas (as in the randomly spaced line pattern and the
unpaired dot pattern), or in different disparity or spatial frequency
channels over the same spatial regions (as in the display made of
two different sine wave gratings, and in the paired dot pattern
with binocular disparity). We hypothesize that a later stage could
integrate these energies in different directions separately to form
two over-lapping transparent surfaces. Note that a pattern
moving in a single direction will not appear transparent because
it will only generate strong opponent or normalized motion
energies in one direction. A display containing two widely
separated objects moving in opposite directions will not appear
transparent either. Although such a display will generate strong
opponent or normalized motion energies in two different
directions, these energies are not spatially mixed and therefore
cannot be integrated into two overlapping surfaces.

Previous physiological experiments indicate that MT cells
show strong suppression among different directions of motion
(Snowden et a., 1991). MT could therefore be the physiological
equivalent of the suppression stage in our simulation, where
transparent and nontransparent displays can be distinguished. In
fact, our physiological recordings in a preceding companion
article demonstrate that average MT activity to the transparent
unpaired dot patterns is significantly higher than that to the
nontransparent paired dot patterns (Qian and Andersen, 1994). In
addition, our psychophysical experiments with the paired and the
unpaired dot patterns indicate that under the foveation condition,
an alignment of opposing motion signals on the scale of 0.4°
can generate large difference in perceptua transparency. We
therefore propose that the suppression stage for differentiating
transparent and nontransparent occurs at the subunit level of MT
receptive fields. V1 cells, on the other hand, show relatively
weak suppression among different directions of motion
(Snowden et al., 1991; Qian and Andersen, 1994). Many of them
behave rather like unidirectional motion energy detectors. They
respond quite well to both transparent and nontransparent
patterns, and the average V1 activity could not reliably tell the
two types of patterns apart (Qian and Andersen, 1994). V1 and
MT therefore approximately correspond to the energy
computation and suppression stages in our simulations.

We used Gabor filters along both spatial and temporal
dimensions for motion detection in our simulations. While the
spatial receptive field structures of ssimple cells are known to be
described by Gabor functions well (Jones and Palmer, 1987), it is
not physiologically plausible to use Gabor functions for the
temporal responses. Temporal Gabor filters are nonzero on the
negative time axis. They are thus noncausal. Thisis, however,



not a major problem because these filters decay to zero
exponentially due to the Gaussian envelopes. We could
practically make the filters causal by shifting them toward the
positive time direction by 3g,. Such a shift will only generate a
phase term and will not affect energy measures. A more serious
problem with using temporal Gabor filters is that the temporal
response of real simple cells is skewed, with its envelope having
alonger decay time than rise time. Also, zero-crossing intervals
in the temporal dimension are not equally spaced (DeAngelis, et
a., 1993). In order to make our model more biologically
relevant, we have repeated our simulations using more realistic
temporal response functions given in Equation 1 of Adelson and
Bergen (1985), and obtained the similar results. We believe that
our results do not depend on the details of the receptive field
shapes of the energy detectors as long as they approximately
measure the local Fourier power within a certain spatiotemporal
frequency window specified by their parameters.

The suppression among different directions of motion used in
our simulation makes it impossible for a stimulus to generate
strong responses along more than one direction of motion in
each small spatial area at the opponent stage when there are no
other cues in the stimulus, such as disparity or spatial frequency
(the weak opponent energies for the paired dot pattern in Fig. 4h,
d-f give an example). The size of the small area is determined by
the size of the front-end filters. In this regard, the suppression
stage is rather like the pooling or regularization step commonly
used in machine vision systems (Horn and Schunck, 1981;
Hildreth, 1984; Heeger, 1987; Wang et al., 1989; Grzywacz and
Yuille, 1990). Such a step is required to solve the aperture
problem and to average out noise while at the same time it
prevents those models from having more than one velocity
estimation over each area covered by the pooling operator. In
this connection, it is interesting to note that some versions of
the pooling procedures for combining local gradient constraints
(Horn and Schunck, 1981; Lucas and Kanade, 1981) are
equivalent to a mixture of subtractive and divisive types of
suppres-sion (Simoncelli, 1993). The agreement between our
simulations and the psychophysical observations implies that
machine vision systems can be made more consistent with
transparent motion perception if the pooling operation in these
systems is restricted to small areas and to each frequency and
disparity channel. We suggest that the difficulty most machine
vision systems have with motion transparency can be partly
attributed to the fact that these systems typically apply pooling
operations over a relatively large region and that they usually do
not explore other cues such as disparity and spatial frequency to
restrict the scope of pooling.

The displays we used in our psychophysical and physiological
experiments and computer simulations are highly artificial and
are unlikely to be found in the natural environment. What, then,
is the advantage of having a suppression stage, such as MT, in
the motion pathway if it is not just for making counterphase
gratings or paired dot patterns appear nontransparent? In fact, if
a subpopulation of VI cells act like unidirectional motion energy
detectors, why doesn't the brain use a family of these cells tuned
to different directions of motion to represent the perception of
multiple motions? Why instead should perception be derived
from the suppression stage in MT, which reduces the system's
acuity to transparent motion (Snowden, 1989) and at the same
time makes the well-balanced patterns appear nontransparent?
The identification of the suppression stage with the pooling
operation in machine vision systems discussed above provides
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an answer. Since the function of the pooling operation is to
solve the aperture problem and to average out noise, we suggest
that directional suppression has similar functions. Indeed,
unidirectional energy detectors like V1 cells suffer the aperture
problem; that is, they seem to respond only to the component of
the motion that is perpendicular to the local spatial orientations
of the stimulus contrast. Also, V1 cells are very responsive to
dynamic noise patterns made of flickering dots (Qian and
Andersen, 1994). The suppression stage in the motion pathway
could help to solve these problems, just as the pooling
operations do in machine vision systems. In fact, we found that
the noise response of MT cells is much lower than that of V1
cells (Qian and Andersen, 1994). There is also evidence that the
human visual system may solve the aperture problem by
averaging local motion measurements (Ferrera and Wilson,
1990, 1991; Yo and Wilson, 1992; Rubin and Hochstein, 1993).
Suppression among different directions of motion could be
viewed as a kind of averaging operation and thus could be used to
solve the aperture problem. A negative effect of the suppression
is the reduced acuity for transparent motion. This problem is
minimized, however, by applying suppression locally and by
restricting it within each disparity and spatial frequency channel,
since multiple motions in the real world are usually not precisely
balanced in each local area and different objects tend to have
different disparity and spatial frequency distributions. While the
inhibition among the cells within each disparity and spatial
frequency channel could help to combine V1 outputs into a single
motion signal at each location in order to solve the aperture
problem and to reduce noise, different disparity and spatial
frequency channels could represent multiple motions at the same
spatial location.

It also seems reasonable to assume that at each spatial location
of the visual field, cells at the suppression stage that are tuned to
the same direction of motion, but different spatiotemporal
frequency bands, should facilitate each other. These cells all carry
consistent motion signals from different frequency ranges at the
same spatial location and these signals are likely generated by
the same moving object.

The model we have proposed for motion transparency is
incomplete in several ways. One problem is that while we
perceive each transparent surface as a coherent whole the output
of the model at the suppression stage contains many isolated
patches (see Figs. 4, 6). This problem can be solved with the
introduction of spatial integration. We can assume that cells
tuned to similar directions of motion at nearby spatial locations
have excitatory connections between them. When enough of the
spatially mixed cells tuned to a given direction are active, the
activity will spread across the whole layer of cells tuned to the
same direction of motion. Transparency will then correspond to a
multipeaked distribution of the direction of motion at al spatial
locations. Spatial summation could also occur within individual
MT cells through facilitation between subunits in a cell's
receptive field. Another issue we have not addressed is whether
explicit speed estimation has an important role in motion trans-
parency. In fact, the outputs of our model are motion energies in
different frequency and disparity channels instead of explicit
velocity estimations. In grouping together elements to form
surfaces, does the visual system consider the magnitudes of the
velocity vectors of these elements, or just their directions? To
explore this question we used transparent random dot patterns and
assigned the speeds of the dots composing each surface according
to auniform probability distribution. We found that when the
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width of the distribution was as large as half of the average speed
of the dots, motion transparency could still be observed without
much difficulty. This suggests that transparent motion
perception does not require precise knowledge of the relative
speed of the individual dots. This observation is consistent with
arecent result by Watamaniuk and Duchon (1992), who found
that human visual system tends to average speed information.

We can now sketch a more complete model for biological
motion detection based on the above discussions. At each spatial
location there is a population of unidirectional motion energy
detection cells tuned to different disparity and different three-
dimensional spatiotemporal frequency bands. Each cell receives
input from the moving pattern in its receptive field according to
the amount of Fourier power of the pattern falling on its disparity
and frequency window. At this stage families of V1 cells tuned to
different directions of motion may be activated, but this could be
caused by the aperture problem of a single moving object, by
noise in the environment, or by true transparent motion of
different objects. Further processing has to be carried out by
connections among the cells. At each spatial location the cells
with similar disparity and frequency tuning, but different
direction preferences, are mutually inhibitory while those with
different frequency tuning but similar directional preference are
mutually excitatory. This is a generalization of the suppression
between opposite directions of motion described in this article
and it combines rawv measurements within each disparity and
frequency channel at each spatial location into asingle motion
representation (or more accurately a unimodal distribution). The
process solves the noise and the aperture problem and still
allows multiple motions to be represented in different small areas
or among different disparity and frequency channels. Finaly, the
cells a nearby spatial locations with similar directional
preferences have excitatory connections between them to
facilitate spatial integration. This process combines consistent
local measurements into coherent surfaces. We are currently
implementing this more complete model of biological motion
processing.

Appendix

We derive the opponent energy expressions for the counterphase
gratings, line patterns, and dot patterns in this section. For the
convenience of subsequent calculations and presentation, we
introduce the complex Gabor filters,

g: (x,t) = expD S +i(w x+out)D 19
< 2mo, o, E—Zaf 20?7 o E’

whose real and imaginary parts are the even and odd Gabor
functions in Equations 1 and 2. Since the convolution of any real
function f(x,t) with the even and odd Gabor filters is equal to the
real and imaginary parts of the convolution of that function with
the complex filters, we will only give responses of the complex
filters for brevity. Using the complex Gabor function, the

unidirectional and opponent motion energies can be written as
2

E*(x.t) =|f Og; | (20)

E-(xt) =|f Og; " (2
and,

E(xt) =|f Og;| -|f Og;|’, (22)

respectively.

Counterphase gratings

A single sine wave grating with spatial frequency Q, and

temporal frequencies Q, and drifting to the right is represented by
. (x1) =sin(Q,x - Q,t), (23

where both Q, and Q, are assumed to be positive. It can be shown

that the responses of the complex Gabor filters in Equation 19 to
the sine wave grating are given by

f' Og: = %{u(—w +wt)exp[i(QXx—Qlt)]

X1

~U(+w,, tw,) exp[i(—Qxx + Qtt)]} : (24)

where u(w, ) are defined as

2 2
O
> (mex)z_%(gtmt)zg (25)

0
u(w,, w,) = Py

Note that f.,” s g.” can be obtained from f.” s g, by replacing «
with -a. Since Q,, Q,, &, ,and o are all assumed to be positive, u(-
w,-w) is usualy much larger than u(w,-«), U(-w,w), and u(w,w).
It achieves its maximum value when the central spatial and
temporal frequencies of the filters match those of the counter-
phase grating. It is clear from Equation 24 that the rightward
motion detector (g.") responds to the right-going sine wave much
better than the leftward motion detector (g,) does.

The sine wave grating drifting to the left with the same spatial
and temporal freguencies as in Equation 23 can be obtained by
replacing Q with -Q in Equation 23. The responses of the
complex Gabor filters to this grating can be obtained by the
same replacement in Equation 24. Using these expressions, the
opponent energy for the counterphase grating (composed of the
above two sine wave gratings moving in the opposite directions)
can then be shown to equal to O independent of the parameters for
the filters and the grating.

Line patterns
A single line with initial position x, and moving to the right
with speed v can be represented by

f,7(x,t) = co(x = x, —\t), (26)
where J is the Dirac function and ¢ is a constant with the

dimension of the inverse of length. The responses of the
complex Gabor filters to the line can be shown to be

c
\;"‘Zn(vzaf + af)

O (x-x, -W)* +020%(w, tw,v)* 0

[éxp+ ) > t

A 2(v o, +0x) A

w0’ *wolvl @7
vial +ol

f,"Og; =

0
@xp%(x =X, —Vt)

To simplify subsequent calculations, we assume that

W= wWy. (28)
That is, the spatial and temporal frequencies of the filters are such
that they are tuned to the speed of the line. Also, f" s g, is
usualy much smaller in magnitude then f* s g, because the
preferred direction of the filter is opposite to that of the line
motion. Then, Equation 27 can be simplified to
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We can now consider two sets of N lines represented by
Equation 9. Using Equations 29 and 30, we obtain the opponent
energy for the line pattern as shown in Equation 10.

Dot patterns

A dot with initial position (x,,Y,) and moving in the +x direction
with speed v from time t, to t, (t, > t,) can be represented by

£ (1) = (X = X, =Wy~ Vo) H(t ~ t,)H(t, ~1), (3D

where H is the step function and c is a constant with the
dimension of the inverse of length squared. With the three-
dimensional extension of the Gabor filters in Equation 19, it can
be shown that

0 (x- Xo _Vt)z +afat2(wt iwxv)z _ (y_yo)2 O
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a G pg— 2(v:a? +0?) 20} 5
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Again, if we assume Equation 28 and neglect f,” s g.-, Equation 32
can be simplified to

S e
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X

Comparing Equation 35 with Equation 29, we see that the two
expressions are rather similar. The introduction of the y-
dimension simply adds an amplitude term and a phase term to the
response. The term containing two error functions is due to the
limited lifetime of the dot. We could derive the opponent energy
expression for the paired and unpaired dot patterns using
Equation 35 but we omit it here because it would be very similar
to Equation 10 for the line patterns.
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