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Let an image consisting of the array of pixels, E(X,y), be denoted E (the
boldface indicating that it is a discrete function over (x,y)). Likewise, let a
kernel with taps A(x,y) be denoted A. The image can be decomposed into a
set of N filtered subimages, S;, by convolution with the set of N kernels, A;
Let * indicate convolution; then the decomposition is:

E = Spt...+Sna

where
S; = E*A;

We do not assume that the subimages have been decimated. Thus each
subimage has the same number of pixels as the original image, and the total
number of pixels in the decomposition is N times the number in the original
image.

The kernels would normally be chosen to produce a decomposition into
a "useful" set of subimages. In the case of noise coring, this will usually mean
that the kernels are selective for orientation and scale, i.e. that they select out

limited patches in the spatial frequency domain. For example, we might
choose Aj to select for vertical energy, A, to select for horizontal energy, and

A3 to select for diagonal energy, as shown by the spectra in figure 1(a). Ag
contains the remaining lowpassed energy. The decomposition is shown as a
flow diagram in figure 1(b).
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Figure 1: (a) the spatial-frequency spectra for a decomposition into lowpass, vertical,

horizontal, and diagonal energy. (b) A flow diagram of the decomposition and reconstruction.
The original image, E, is decomposed into the 4 subimages, S ...S 3, by by filtering with the

kernels Ag ...A3. These subimages sum to reconstruct the original, E.

(Observe that it is sufficient, but not necessary, that the kernels
themselves sum to the unit impulse , d(X,y) ).



Suppose now that each kernel Aj can be expressed as the convolution of
a kernel Bj with itself:
Ai = Bi*Bi'

Then one can define a symmetrical subband transform as follows:

Forward transform:
Let

Ti = E*Bi.

Then the transform is:
E =>> {To, e 1TN-1}
Thus transform consists of the set of subband images, T;.

Inverse transform:
To reconstruct the image from the transform, apply the kernels B once

again to the corresponding images T;and sum the resulting images S;.
TO*BO+"'+TN-1*BN-1 = SO+"'+SN-1
= E

The transform is illustrated in figure 2. The image E is filtered through a
bank of parallel filters, indicated by the convolving kernels B;. The resulting

filtered images are refiltered by the same kernels, and then summed to
reconstruct the original image.
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Figure 2: A symmetrical subband transform. Image E is filtered by convolution with kernels
Bp,.--B3, to form the transform images T(...T3. A second filtering leads to a set of subimages

S..-S 3 that can be summed to reconstruct the original image, E.

In a typical subband transform, one of the filters is lowpass, containing all

of the DC component, while the others are bandpass, with no DC. We will
assume that the kernel B is lowpass, as are the associated images Ty and

So.

The basis functions of the subband transform are the kernels themselves,
taking centers at all positions in the image. That is, the transform can be
considered to decompose the image into a sum of subimages, where the
subimages themselves are sums of kernels repeated along the (x,y) grid:

c-Ss

where

SiY) = Dy THUV)BX-Uy-)]



If the basis functions are selective for useful image information such as
edges or lines, then the transform can be used to reduce visible noise by
applying a static non-linear coring function. A typical coring function is shown
in figure 3. It is assumed that the values of the coefficients to which it is
applied cover the arbitrary range (-127 to 127). If a coefficient is near zero, its
value is likely to represent noise and therefore it is attenuated. If a value is
large, it is likely to represent legitimate image information and therefore it is
left unchanged or slightly amplified. There is a smooth transition between the
"coring"” region and the "peaking" region. The precise shape of the best coring
function will depend on the characteristics of the signal and the noise, but the
coring function will have this general form.
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Figure 3: A typical coring function, which acts as a static non-linearity on each pixel value
of a bandpass transform image. Values near zero are attenuated, while values far from zero are

left unchanged or are amplified.

Coring can be usefully applied to all of the bandpass images in the
transform, i.e. all of the images except for the lowpass image Ty. The process



is shown in figure 4. Denote the coring functions c;(.), the cored transform
images 'T'i , and the resulting cored subimages Si. That s,
Ti ()= i (T (xy))
and
Si= :I:i *B

The final cored image is then
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Figure 4: Flow diagram for coring an image. The original, E, is transformed to the images
Tg....T3. The three bandpass images, T1,...T3, are then cored with the static non-linearities,

Cq, .-, 3. Reconstruction proceeds normally. The final cored image, E, should have less

noise.

Coring is more effective when carried out at multiple spatial frequency

bands. The previous description applies to coring at a single spatial
frequency range determined by the kernels B;. The lowpass transform image,



To, was not cored, and so all of its information (both signal and noise) is

passed unchanged. This information can be further subdivided by applying a
second subband transform with kernels tuned to lower frequencies, and
coring can be applied to the resulting transformed images T';.

The most efficient way to achieve this is hierarchically, as shown in
figure 5. At the first level, the image E is transformed into the images Ty,
T,,T,, and T3. Since Ty is lowpass, it cannot be directly cored. However it

can be used as input to a second coring stage, where all the kernels operate
at lower frequencies. The second stage kernels are denoted B'j, the transform

images LK the coring function cjj , the cored transform images f‘i , and the

cored subimages §'i . The cored version of Ty, denoted Ty , is then

combined with the cored transform images from the first stage, and the final
cored image is reconstructed.

This process can be repeated for several stages; each stage will remove
noise in a lower frequency band than the previous stage. In practice there is
usually little advantage to repeating the process at more than 3 frequency
bands.
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Figure 5: Two stage coring. The low-pass transform image T undergoes a second stage

of coring by a set of kernels B'(,...B'3. These kernels are tuned to lower spatial frequency than

the first set, and so core out noise in a lower frequency band.

We will now describe a simple concrete example of such a two-level
coring system, using 2x2 Hadamard functions as the kernels. These are not



very good kernels because their poor filter selectivity; but they offer an
example that is easily understood. The first-level kernels are as follows:

1 1 -1 -1
B, = 1/4 B, = 1/4

1 1 1 1

101 1 -1
B, = 1/4 B, = 1/4

101 -101

And for the second level, the same kernels are simply padded with
zeroes to spread their taps to double the distance, thereby reducing their
frequency tuning by one octave:

5 /101 - /-10-1

o = 1/4 00 1_14000
101 10 1
-1 0 1 1 0 -1

B' = B' =

) 1/4OOO .= 1/4 0 0
-1 0 1 -1 0 1

Note that at the second level the kernels are being applied to an image
that has already been convolved with the lowpass kernel By. Thus the

effective kernels at the second stage are actually given by the convolutions of
the new kernels, B'j, with B:



1111 111
Bo*By= 1/16| 1 1 1 1 By*Bi= 1/16| -1 -1 -1
1111 111
1111 111
1111 111
Bo*By= 1/16| -1 -1 1 1 Bo*Bsy= 1/16| 1 1 -1
1111 111
1111 111

The same process of padding and convolution can be repeated at further
stages. Large effective 2-D kernels are thus generated, using the principles of
hierarchical discrete correlation previously outlined by Burt (1981).

More effective coring requires kernels with better tuning. A good set are
the quadrature mirror filters (QMF's) that have been widely used in speech
coding (Crochiere and Rabiner, 1983). A pair of high-pass and low-pass QMF
kernels can be separably combined to form a set of four 2-D kernels (cf.
Woods and O'Neil, 1986). Note that QMF kernels are designed to be used
with decimation, but that we do not actually decimate in our coring procedure.
This is because we find that decimation introduces "jaggies" and other
aliasing artifacts when combined with the non-linear operation of coring.
Since we do not decimate we are effectively working at double the necessary
linear sample density at the first stage, and at quadruple the necessary linear
sample density at the second stage. This extra density leads to extra
computations, but prevents aliasing artifacts.

Here is an example of a 12-tap low-pass and high-pass QMF pair, taken
from Johnson (1980):

Lowpass: Highpass:

-.003809 .003809
.018857 -.018857




-.002710 .002710

-.084696 .084696
.088470 -.088470
484389 -.484389
484389 484389
.088470 .088470
-.084696 -.084696
-.002710 -.002710
.018857 .018857
-.003809 -.003809

The QMF kernels that have been published have an even number of
taps, and the high-pass kernels are odd-symmetric. We have also derived
kernels that are even symmetric, with an odd number of taps; these kernels
are different from those that have been published, and tend to be more
compact. These filters were derived numerically to satisfy the three
constraints: (1) narrow spatial frequency tuning, (2) spatial compactness, and
(3) spectral completeness (i.e. ability to reconstruct the original image
accurately from the subimages).

A 5-tap kernel pair is shown here:

Lowpass: Highpass:

-.0516 -.0516
.2500 -.2500
.6032 .6032
.2500 -.2500

-.0516 -.0516

A 7-tap kernel pair is shown here:

Lowpass: Highpass:
-.0052 .0052
-.0516 -.0516

.2552 -.2552



.6035 .6035

.2552 -.2552
-.0516 -.0516
-.0052 .0052

By combining these two 1-D kernels separably, in all four pairings, one
can create four 2-D kernels, selective for low-pass, vertical, horizontal, and
diagonal energy. Because these kernels are spatially compact, they lead to
coring that is well localized, without ringing artifacts. And because the kernels
have compact spectra, they are good at selecting out oriented image
information within each frequency band.

Asymmetric transforms.

We note that it is also possible to use asymmetric transforms, where the

sampling functions are different from the basis functions. We previously
assumed that the original set of kernels, A;, could be expressed as the

convolution of B with itself. This amounts to saying that the sampling

functions are the same as their corresponding basis functions (up to a
scaling), a fact that will hold for orthogonal basis sets. More generally we can
assume that the A; are expressible as the convolutions of sampling/basis
pairs that need not be equal. This occurs when the sampling and basis
functions are related by the pseudo-inverse.

The asymmetric transform is illustrated in figure 6. Let the sampling
kernels be b; and the basis kernels be B;. Then we let

Ti = E*bi.

and the forward transform is:
E =>> {To, e 1TN-1}

For the inverse transform, the kernels B; are applied to the
corresponding images T; to give the subband images S;. These are summed

to reconstruct the original image. That is,



= E
E E
Forward transform Inverse transform
\4
T3 S 3
* *
b3 B3
T S
2 2
(=)
T S
1 1
T S
0 0

Figure 6: An asymmetric subband transform. The transforming kernels are bg,...b 3, while

the kernels used for reconstruction are B,...B 3.
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