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Let an image consisting of the array of pixels, E(x,y), be denoted E (the

boldface indicating that it is a discrete function over (x,y)).  Likewise, let a

kernel with taps A(x,y) be denoted A.  The image can be decomposed into a
set of N filtered subimages, S i,  by convolution with the set of N kernels, Ai.

Let   *  indicate convolution; then the decomposition is:
E  =  S0+ . . . +S N-1

where
S i  =  E*Ai

We do not assume that the subimages have been decimated.  Thus each

subimage has the same number of pixels as the original image, and the total

number of pixels in the decomposition is N times the number in the original

image.

The kernels would normally be chosen to produce a decomposition into

a "useful" set of subimages.  In the case of noise coring, this will usually mean

that the kernels are selective for orientation and scale, i.e. that they select out

limited patches in the spatial frequency domain.  For example, we might
choose A1 to select for vertical energy, A2 to select for horizontal energy, and

A3 to select for diagonal energy, as shown by the spectra in figure 1(a).  A0

contains the remaining lowpassed energy.  The decomposition is shown as a

flow diagram in figure 1(b).
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Figure 1: (a) the spatial-frequency spectra for a decomposition into lowpass, vertical,

horizontal, and diagonal energy. (b) A flow diagram of the decomposition and reconstruction.

The original image, E , is decomposed into the 4 subimages, S0,...S3, by by filtering with the

kernels A0,...A3. These subimages sum to reconstruct the original, E .

(Observe that it is sufficient, but not necessary, that the kernels

themselves sum to the unit impulse , (x,y) ).



Suppose now that each kernel Ai can be expressed as the convolution of

a kernel Bi with itself:

Ai = B i*Bi.

Then one can define a symmetrical subband transform as follows:

    Forward transform:

Let
T i = E*Bi.

Then the transform is:
E   =>>  { T0, . . . ,TN-1 }

Thus transform consists of the set of subband images, T i.

   Inverse transform:
To reconstruct the image from the transform, apply the kernels Bi once

again to the corresponding images T i and sum the resulting images S i.

T0*B0 + . . . + TN-1 * BN-1      =    S 0 + . . . + S N-1

                                                 =   E

The transform is illustrated in figure 2.  The image E is filtered through a
bank of parallel filters, indicated by the convolving kernels Bi.  The resulting

filtered images are refiltered by the same kernels, and then summed to

reconstruct the original image.
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Figure 2: A symmetrical subband transform. Image E  is filtered by convolution with kernels

B0,...B3, to form the transform images T0...T3.  A second filtering leads to a set of subimages

S0...S3 that can be summed to reconstruct the original image, E .

In a typical subband transform, one of the filters is lowpass, containing all

of the DC component, while the others are bandpass, with no DC.  We will
assume that the kernel B0 is lowpass, as are the associated images T0 and

S 0.

The basis functions of the subband transform are the kernels themselves,

taking centers at all positions in the image.  That is, the transform can be

considered to decompose the image into a sum of subimages, where the

subimages themselves are sums of kernels repeated along the (x,y) grid:

E  = Σ i S i

where

S i(x,y)  =  Σu,vTi(u,v)Bi(x-u,y-v)]



If the basis functions are selective for useful image information such as

edges or lines, then the transform can be used to reduce visible noise by

applying a static non-linear coring function.  A typical coring function is shown

in figure 3.  It is assumed that the values of the coefficients to which it is

applied cover the arbitrary range (-127 to 127).  If a coefficient is near zero, its

value is likely to represent noise and therefore it is attenuated.  If a value is

large, it is likely to represent legitimate image information and therefore it is

left unchanged or slightly amplified.  There is a smooth transition between the

"coring" region and the "peaking" region.  The precise shape of the best coring

function will depend on the characteristics of the signal and the noise, but the

coring function will have this general form.
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Figure 3: A typical coring function, which acts as a static non-linearity on each pixel value

of a bandpass transform image.  Values near zero are attenuated, while values far from zero are

left unchanged or are amplified.

Coring can be usefully applied to all of the bandpass images in the
transform, i.e. all of the images  except for the lowpass image T0.  The process



is shown in figure 4. Denote the coring functions ci(.), the cored transform

i
~
Timages      , and the resulting cored subimages     . That is, iS~

i
~
T (x,y) =  c  ( T  (x,y) )i i

and

i
~
TiS~ = * B

The final cored image is then

~E = ∑i [ iS~ ]
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Figure 4: Flow diagram for coring an image.  The original, E , is transformed to the images

T0,...T3.  The three bandpass images, T1,...T3,  are then cored with the static non-linearities,

c  , ..., c  . Reconstruction proceeds normally. The final cored image, E, should  have less 
~

1 3

 noise.

Coring is more effective when carried out at multiple spatial frequency

bands.  The previous description applies to coring at a single spatial
frequency range determined by the kernels Bi.  The lowpass transform image,



T0, was not cored, and so all of its information (both signal and noise) is

passed unchanged.  This information can be further subdivided by applying a

second subband transform with kernels tuned to lower frequencies, and
coring can be applied to the resulting transformed images T' i.

The most efficient way to achieve this is hierarchically, as shown in
figure 5.  At the first level, the image E is transformed into the images T0,

T1,T2, and T3.  Since T0 is lowpass, it cannot be directly cored.  However it

can be used as input to a second coring stage, where all the kernels operate
at lower frequencies.  The second stage kernels are denoted B' i, the transform

images T'  , the coring function c'  , the cored transform images T'  , and i i i
~

 the

icored subimages S'  . The cored version of T  , denoted T  , is 0
~

0  then
~

combined with the cored transform images from the first stage, and the final

cored image is reconstructed.

This process can be repeated for several stages; each stage will remove

noise in a lower frequency band than the previous stage.  In practice there is

usually little advantage to repeating the process at more than 3 frequency

bands.
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Figure 5: Two stage coring.  The low-pass transform image T0 undergoes a second stage

of coring by a set of kernels B '0,...B '3.  These kernels are tuned to lower spatial frequency than

the first set, and so core out noise in a lower frequency band.

We will now describe a simple concrete example of such a two-level

coring system, using 2x2 Hadamard functions as the kernels.  These are not



very good kernels because their poor filter selectivity; but they offer an

example that is easily understood.  The first-level kernels are as follows:
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And for the second level, the same kernels are simply padded with

zeroes to spread their taps to double the distance, thereby reducing their

frequency tuning by one octave:
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Note that at the second level the kernels are being applied to an image
that has already been convolved with the lowpass kernel B0.  Thus the

effective kernels at the second stage are actually given by the convolutions of
the new kernels, B' i, with B0:
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The same process of padding and convolution can be repeated at further

stages.  Large effective 2-D kernels are thus generated, using the principles of

hierarchical discrete correlation previously outlined by Burt (1981).

More effective coring requires kernels with better tuning.  A good set are

the quadrature mirror filters (QMF's) that have been widely used in speech

coding (Crochiere and Rabiner, 1983).  A pair of high-pass and low-pass QMF

kernels can be separably combined to form a set of four 2-D kernels (cf.

Woods and O'Neil, 1986).  Note that QMF kernels are designed to be used

with decimation, but that we do not actually decimate in our coring procedure.

This is because we find that decimation introduces "jaggies" and other

aliasing artifacts when combined with the non-linear operation of coring.

Since we do not decimate we are effectively working at double the necessary

linear sample density at the first stage, and at quadruple the necessary linear

sample density at the second stage.  This extra density leads to extra

computations, but prevents aliasing artifacts.

Here is an example of a 12-tap low-pass and high-pass QMF pair, taken

from Johnson (1980):

Lowpass: Highpass:

-.003809  .003809

 .018857 -.018857



-.002710  .002710

-.084696  .084696

 .088470 -.088470

 .484389 -.484389

 .484389  .484389

 .088470  .088470

-.084696 -.084696

-.002710 -.002710

 .018857  .018857

-.003809 -.003809

The QMF kernels that have been published have an even number of

taps, and the high-pass kernels are odd-symmetric.  We have also derived

kernels that are even symmetric, with an odd number of taps; these kernels

are different from those that have been published, and tend to be more

compact. These filters were derived numerically to satisfy the three

constraints: (1) narrow spatial frequency tuning, (2) spatial compactness, and

(3) spectral completeness (i.e. ability to reconstruct the original image

accurately from the subimages).

  A 5-tap kernel pair is shown here:

Lowpass: Highpass:

-.0516 -.0516

 .2500 -.2500

 .6032  .6032

 .2500 -.2500

-.0516 -.0516

A 7-tap kernel pair is shown here:

Lowpass: Highpass:

-.0052  .0052

-.0516 -.0516

 .2552 -.2552



 .6035  .6035

 .2552 -.2552

-.0516 -.0516

-.0052  .0052

By combining these two 1-D kernels separably, in all four pairings, one

can create four 2-D kernels, selective for low-pass, vertical, horizontal, and

diagonal energy.  Because these kernels are spatially compact, they lead to

coring that is well localized, without ringing artifacts.  And because the kernels

have compact spectra, they are good at selecting out oriented image

information within each frequency band.

    Asymmetric transforms.

We note that it is also possible to use asymmetric transforms, where the

sampling functions are different from the basis functions.  We previously
assumed that the original set of kernels, Ai, could be expressed as the

convolution of Bi with itself.  This amounts to saying that the sampling

functions are the same as their corresponding basis functions (up to a

scaling), a fact that will hold for orthogonal basis sets.  More generally we can
assume that the Ai  are expressible as the convolutions of  sampling/basis

pairs that need not be equal.  This occurs when the sampling and basis

functions are related by the pseudo-inverse.

The asymmetric transform is illustrated in figure 6.  Let the sampling
kernels be b i and the basis kernels be Bi .  Then we let

T i = E*b i.

and the forward transform is:
E   =>>  { T0, . . . ,TN-1 }

For the inverse transform,  the kernels Bi are applied to the

corresponding images T i  to give the subband images S i.  These are summed

to reconstruct the original image.  That is,



T0*B0 + . . . + TN-1 * BN-1      =    S 0 + . . . + S N-1

                                                 =   E
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Figure 6: An asymmetric subband transform.  The transforming kernels are b0,...b3, while

the kernels used for reconstruction are B0,...B3.
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