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The classical solution to the noise removal problem is
the Wiener filter, which utilizes the second-order statis-
tics of the Fourier decomposition. Subband decomposi-
tions of natural images have significantly non-Gaussian
higher-order point statistics; these statistics capture tm-
age properties that elude Fourier-based techniques. We
develop a Bayesian estimator that is a natural exten-
ston of the Wiener solution, and that exploits these
higher-order statistics. The resulting nonlinear esti-
mator performs a “coring” operation. We prowvide a
simple model for the subband statistics, and use it to
develop a semi-blind noise-removal algorithm based on
a steerable wavelet pyramid.

A common technique for noise reduction is known as
“coring”. An image signal is split into two or more
bands; the highpass bands are subjected to a thresh-
old non-linearity that suppresses low-amplitude values
while retaining high-amplitude values. Use of such
techniques is widespread: for example, most consumer
VCR’s use a simple one-dimensional coring technique.

Many variants of coring have been developed, includ-
ing two-dimensional coring [1], multi-scale oriented cor-
ing [2, 3], pyramid coring [4], and multi-band coring
with orthogonal bases [5]. The nonlinear operator is of-
ten smoothed to give a “soft” threshold, but the exact
choice of function in these techniques has been ad hoc.
Similar techniques, based on the statistical concept of
“shrinkage”, have been recently used with wavelet ex-
pansions [6].

The intuition underlying coring is that images typically
have spatial structure, consisting of smooth areas inter-
spersed with occasional edges. This notion is evident
statistically: the pixels in highpass and bandpass sub-
bands of images have significantly non-Gaussian proba-
bility density functions (pdf’s) that are sharply peaked
at zero with broad tails. Specifically, the coefficient
of kurtosis « (fourth moment divided by squared vari-
ance) is typically well above the value of 3 that one
expects for a Gaussian pdf.

Field [7] has shown that kurtosis for subbands of nat-
ural scenes varies with filter bandwidth, and 1s maxi-
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Figure 1: Histograms of a mid-frequency subband
in an octave-bandwidth wavelet decomposition for
two different images. Left: The“Einstein” image.
Right: A white noise image with uniform pdf.

mal at roughly one octave. Significantly wider or nar-
rower bandwidths produce kurtoses near 3 (i.e., Gaus-
sian statistics). Several authors have used Laplacian
pdf models (with kurtosis 6) for image subband statis-
tics (e.g., [8, 9]).

Figure 1 contains an example histogram from a single
subband of a wavelet transform built on the “Einstein”
image, for which the sample kurtosis is 9.8. For com-
parison, the histogram of the same subband built on
uniform white noise is shown. This histogram is nearly
Gaussian, with a sample kurtosis of 2.9. Coring relies
on the striking dissimilarity between the point statis-
tics of these two image types.

In the following, we describe a technique for determin-
ing the optimal coring function in the Bayesian sense!,
and apply it to a steerable wavelet pyramid.

1. BAYESTAN SIGNAL ESTIMATION

Consider a scalar  contaminated with additive noise
n: y = x + n. The mean of the posterior distribution
provides an unbiased least-squares estimate of the vari-
able z, given measurement y. Bayes’ rule allows us to
write this in terms of the probability densities of the
noise and signal:
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TAn earlier version of this technique is described in [10], a
bachelor’s thesis supervised by the authors.
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where P, indicates the probability density function of
the noise, and P, the prior probability density function
of the signal. The denominator is the pdf of the noisy
observation, computed via convolution of the noise and
signal pdf’s. In order to use this equation to estimate
the original signal value x, we must know both of these
probability density functions.

Consider a few simple examples. First, let the noise
have a zero-mean Gaussian distribution with variance
o2, and let the signal prior be a zero-mean Gaussian
with variance o2. In this case, a well-known closed-

form solution exists:
2
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The solution 1s a simple linear rescaling of the measure-
ment. When applied to the coefficients of a Fourier
transform, this estimator corresponds to the Wiener
filter. When applied to subbands of a wavelet trans-
form, the solution is an approximation to the Wiener
filter, in which the power spectral density information
is averaged over each of the subbands.

Now consider the case in which the noise distribution
is Gaussian, but the signal prior is a more sharply
peaked distribution, such as that shown in figure 1. In
such cases, a closed-form expression for the estimator
in equation (1) may not be available, but a numerical
solution may be used.?. We have computed a numeri-
cal approximation of the estimator for the histograms
illustrated figure 1. The estimator is illustrated graph-
ically in figure 2. Note that this estimator now corre-
sponds to a nonlinear “coring” operation: large ampli-
tude values are preserved, and small amplitude values
are suppressed. This is intuitively sensible: given the
substantial signal probability mass at x = 0, small val-
ues of y are assumed to have arisen from a value of
z = 0. This curve is similar to the soft-thresholding
functions that have been previously devised by more
ad hoc methods; the Bayesian derivation thus provides
a principled justification for coring systems.

2. PARAMETERIZED MODEL FOR
WAVELET COEFFICIENT STATISTICS

The Bayesian estimator discussed above relies on a
knowledge of the signal point statistics. In order to uti-
lize it, we need a parameterized model for these pdf’s
such that: 1) the model provides a good fit to the

2One must, in practice, take care to regularize singularities
resulting from distribution points with very small probability.
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Figure 2: Bayesian estimator (symmetrized) for
the signal and noise histograms shown in figure 1.
Superimposed on the plot is a straight line indicat-
ing the identity function.

statistics of natural images, and 2) one can estimate
the model parameters from the noisy observation.

For our purposes here, we use a two-parameter gener-
alized Laplacian distribution, also used by Mallat [11]:

Po(w) oc e”1®/s1" (2)

The distribution is zero-mean and symmetric, and the
parameters {s, p} are directly related to the second and
fourth moments. Specifically (after consultation with
an integral table) one obtains:
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where T'(x) = fooo t*=let dt, the well known “gamma’”
function. Given the sample variance and kurtosis of
a histogram, we can solve for the two parameters of
our model pdf. Typical values for p are in the range
[0.5,1.0]. This method of model density estimation is
simple and direct, but clearly suboptimal. In the cur-
rent context, the quality of the estimator should be
tested by comparing the noise removal results using
the sample (histogram) statistics, and those using the
model pdf: such a comparison is given in section 4.

We are also interested in a more realistic “blind” al-
gorithm, in which the parameters are estimated from
noisy observations. We note that the second and fourth
moments of a generalized Laplacian signal corrupted by
additive Gaussian white noise are:
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Assuming o, 1s known, the measurements of these two
moments of the noisy data is sufficient to estimate the
model pdf parameters. Results of such an algorithm
are given in section 4.
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Figure 3: A 3-scale 3-orientation steerable pyra-
mid. Shown are the three oriented bandpass images
at each scale, and the residual lowpass image.

3. CHOICE OF WAVELET TRANSFORM

We have implemented a noise reduction scheme based
on an oriented multi-scale representation known as a
steerable pyramid [12]. In this decomposition, the im-
age 1s subdivided into subbands localized in both scale
and orientation. In scale, the subbands have octave
bandwidth with a functional form constrained by a
recursive system diagram. In orientation, a steerable
pyramid can be designed with any number of orienta-
tion bands, k. The resulting transform is overcomplete
by a factor of 4k/3. Orientation tuning is constrained
by the property of steerability [13].

The transform is “self-inverting” (i.e., the matrix cor-
responding to the inverse transformation is equal to
the transpose of the forward ransformation matrix)3,
and has the additional ‘advantages of being translation-
invariant (aliasing-free) and rotation-invariant (steer-
able). Figure 3 shows an example steerable pyramid
decomposition, with three orientation bands.

One disadvantage of the the steerable pyramid for this
task is the lack of orthogonality. An orthonormal ba-
sis guarantees that the noise component of the trans-
form coefficients will be uncorrelated, assuming that
the noise was white in the image domain. For the pur-
poses of this paper, we ignore the off-diagonal terms of
the covariance matrix.

4. EXAMPLES

We implemented the “semi-blind” Bayesian de-noising
algorithm described previously, in which we assumed
a known noise variance. We constructed a 4-scale 4-
orientation steerable pyramid from the contaminated
image. For each wavelet subband, we estimated the
model pdf parameters s and p, and numerically com-
puted an estimator via equation (1). After applying
the estimator, we inverted the transform to give the

3In the wavelet literature, such transforms are known as tight
frames.

Noisy || Bayes ideal | Bayes blind | Wiener

4.78 11.75 11.67 9.79

9.00 13.89 13.82 11.88

13.98 16.49 16.40 14.70
Table 1: SNR wvalues (in dB) for the noise-

contaminated image, and images cleaned using each
of the three noise removal algorithms. See text.

“cleaned” image. To gauge the quality of our model pdf
and fitting procedure, we also computed the idealized
estimator, based on the actual clean signal histograms.
Finally, for comparison, we computed a (semi-blind)
pyramid-based Wiener filter solution in which we as-
sumed a known noise variance.

We applied these three algorithms to the “Einstein”
image for three different levels of Gaussian white noise
contamination. Table 1 gives signal-to-noise ratios for
each case. Note that the semi-blind Bayesian algo-
rithm performs nearly as well in all cases as the ideal
Bayesian, indicating that the model pdf is successfully
approximating the wavelet coefficient statistics. Note
also that the Bayesian algorithm outperforms the Wiener
algorithm (as it should, since it is taking advantage of
additional information).

Figure 4 shows four images corresponding to the mid-
dle row in table 1. The Bayesian image appears to be
both sharper (because high-amplitude coefficients are
preserved) and less noisy (because low-amplitude coef-
ficients are suppressed). The results can be made more
visually appealing by a subsequent sharpening opera-
tion, although this reduces the SNR.

5. DISCUSSION

Removal of noise from images relies on differences in
the statistical properties of noise and signal. The clas-
sic Wiener solution utilizes differences in power spec-
tral density, a second-order property. The Bayesian
estimator described above provides a natural extension
for incorporating the higher-order statistical regularity
present in the point statistics of subband representa-
tions. The estimator is based on two factors — a sub-
band representation and a statistical model — both of
which can be generalized. Theoretically, one would like
a direct link from the properties of the subband pdf to
the quality of noise removal, which could then be used
to optimize the choice of subband transform. In ad-
dition, the statistical model should account for joint
statistics of wavelet coefficients, both within and be-
tween bands. The approach also generalizes to other
types of distortion, including blurring and corruption
with non-additive noise; one only need have the con-
ditional pdf describing the distortion process. Finally,
these types of statistical image model should prove use-



ful

Figure 4: Noise reduction example. (a) Original image (cropped). (b) Immage contaminated with additive Gaussian
white noise (SNR = 9.00dB). (c¢) Image restored using (semi-blind) Wiener filter (SNR = 11.88dB). (d) Immage restored

using (semi-blind) Bayesian estimator (SNR = 13.82dB).

in other applications, such as image compression or

texture synthesis.
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