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Linear transforms are the basis for many techniques used in image pro-

cessing, image analysis, and image coding. Subband transforms are a subclass

of linear transforms which o�er useful properties for these applications. In

this chapter, we discuss a variety of subband decompositions and illustrate

their use in image coding. Traditionally, coders based on linear transforms

are divided into two categories: transform coders and subband coders. This

distinction is due in part to the nature of the computational methods used for

the two types of representation.

Transform coding techniques are usually based on orthogonal linear trans-

forms. The classic example of such a transform is the discrete Fourier trans-

form (DFT), which decomposes a signal into sinusoidal frequency compo-

nents. Two other examples are the discrete cosine transform (DCT) and the

Karhunen-Loeve transform (KLT). Conceptually, these transforms are com-

puted by taking the inner product of the �nite-length signal with a set of basis

functions. This produces a set of coe�cients, which are then passed on to the
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144 SUBBAND IMAGE CODING

quantization stage of the coder. In practice, many of these transforms have

e�cient implementations as cascades of \buttery" computations. Further-

more, these transforms are usually applied independently to non-overlapping

sub-blocks of the signal.

Subband transforms are generally computed by convolving the input sig-

nal with a set of bandpass �lters and decimating the results. Each decimated

subband signal encodes a particular portion of the frequency spectrum, corre-

sponding to information occurring at a particular spatial scale. To reconstruct

the signal, the subband signals are upsampled, �ltered, and then combined ad-

ditively. For purposes of coding, subband transforms can be used to control the

relative amounts of error in di�erent parts of the frequency spectrum. Most

�lter designs for subband coders attempt to minimize the \aliasing" resulting

from the subsampling process. In the spatial domain, this aliasing appears

as evidence of the sampling structure in the output image. An ideal sub-

band system incorporates \brick-wall" bandpass �lters which avoid aliasing

altogether. Such �lters, however, produce ringing (Gibbs phenomenon) in the

spatial domain which is perceptually undesirable.

Although coders are usually classi�ed in one of these two categories, there

is a signi�cant amount of overlap between the two. In fact, the latter part of

this chapter will focus on transforms which may be classi�ed under either cat-

egory. As an example, consider the block discrete cosine transform (DCT), in

which the signal (image) is divided into non-overlapping blocks, and each block

is decomposed into sinusoidal functions. Several of these sinusoidal functions

are depicted in �gure 4.1. The basis functions are orthogonal, since the DCT

is orthogonal and the blocks are chosen so that they do not overlap. Coders

employing the block DCT are typically classi�ed as transform coders.

We may also view the block DCT as a subband transform. Computing a

DCT on non-overlapping blocks is equivalent to convolving the image with each

of the block DCT basis functions and then subsampling by a factor equal to

the block spacing. The Fourier transform of the basis functions (also shown in

�gure 4.1) indicates that each of the DCT functions is selective for a particular

frequency subband, although it is clear that the subband localization is rather

poor. Thus, the DCT also quali�es as a subband transform.

4.1 Subband Transform Properties

Given the overlap between the categories of transform and subband coders,

what criteria should be used in choosing a linear transformation for coding pur-

poses? We will consider a set of properties which are relevant to the problem
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Figure 4.1: Several of the 16-point DCT basis functions (left) with their

corresponding Fourier transforms (right). The Fourier transforms are plot-

ted on a linear scale over the range from 0 to �.
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of image coding.

Scale and Orientation

An explicit representation of scale is widely accepted as being important for

e�ective image representation [1, 2, 3, 4, 5, 6]. Images contain objects and

features of many di�erent sizes which may be viewed over a large range of

distances, and therefore, a transformation should analyze the image simulta-

neously (and independently) at di�erent scales. Several authors have argued

that the correct partition in terms of scale is one in which the scales are re-

lated by a �xed constant of proportionality. In the frequency domain, this

corresponds to a decomposition into localized subbands with equal widths on

a logarithmic scale.

For two-dimensional signals, a localized region in the frequency plane cor-

responds spatially to a particular scale and orientation. Orientation speci�city

allows the transform to extract higher order oriented structures typically found

in images, such as edges and lines. Thus, it is useful to construct transforma-

tions which partition the input signal into localized patches in the frequency

domain.

Spatial localization

In addition to localization in frequency, it is advantageous for the basis func-

tions to be spatially localized; that is, the transform should encode positional

information. The necessity of spatial localization is particularly apparent in

machine vision systems, where information about the location of features in

the image is critical. This localization should not, however, occur abruptly

as in the block DCT example given earlier { abrupt transitions lead to poor

localization in the frequency domain.

The concept of joint localization in the spatial and spatial-frequency do-

mains may be contrasted with the two most common representations used for

the analysis of linear systems: the sampled or discrete signal, and its Fourier

transform. The �rst of these utilizes the standard basis set for discrete signals

consisting of impulses located at each sample location. These basis functions

are maximally localized in space, but convey no information about scale. On

the other hand, the Fourier basis set is composed of even and odd phase sinu-

soidal sequences, whose usefulness is primarily due to the fact that they are

the eigenfunctions of the class of linear shift-invariant systems. Although they

are maximally localized in the frequency domain, each one covers the entire

spatial extent of the signal.
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It is clear that representation in the space or frequency domains is ex-

tremely useful for purposes of system analysis, but this does not imply that

impulses or sinusoids are the best way to encode signal information. In a

number of recent papers [7, 8, 9], the importance of this issue is addressed and

related to a 1946 paper by Dennis Gabor [10], who showed that the class of

linear transformations may be considered to span a range of joint localization

with the impulse basis set and the Fourier basis set at the two extremes. He

demonstrated that one-dimensional signals can be represented in terms of ba-

sis functions which are localized both in space and frequency. We will return

to Gabor's basis set in section 4.3.

Orthogonality

A �nal property to be considered is orthogonality. The justi�cation usually

given for the orthogonality constraint is in terms of decorrelation. Given a

signal with prescribed second order statistics (i.e. a covariance matrix), there

is an orthogonal transform (the Karhunen-Loeve transform) which will decor-

relate the signal (i.e. diagonalize the covariance matrix). In other words, the

second order correlations of the transform coe�cients will be zero. Orthogo-

nality is usually not discussed in the context of subband transforms, although

many such transformas are orthogonal. The examples in the next section will

demonstrate that although orthogonality is not strictly necessary, a transform

that is strongly non-orthogonal may be undesirable for coding.

4.2 Linear Transformations on Finite Images

The results presented in this chapter are based on analysis in both the spatial

and the frequency domains, and thus rely on two separate notational frame-

works: the standard matrix notation used in linear algebra, and the Fourier

domain representations commonly used in digital signal processing. In this

section, we describe the two types of notation and make explicit the connec-

tion between them. For simplicity, we will restrict the discussion to analysis

of one dimensional systems, although the notation may be easily extended to

multiple dimensions.

4.2.1 Analysis/Synthesis Filter Bank Formulation

We will be interested in linear transformations on images of a �nite size which

may be expressed in terms of convolutions with �nite impulse response (FIR)
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�lters. The schematic diagram in �gure 4.2 depicts a convolution-based sys-

tem known as an analysis/synthesis (A/S) �lter bank [11]. The notation in the

diagram is standard for digital signal processing [12], except that for the pur-

poses of this paper, the boxes Hi(!) indicate circular convolution of a �nite

input image of size N with a �lter with impulse response hi(n) and Fourier

transform

Hi(!) =
X
n

hi(n)e
�j!n

We do not place a causality constraint on the �lter impulse responses, since

they are meant for application to images. We do, however, assume that the

region of support of the �lter is smaller than the image size. The boxes ki #
indicate that the sequence is subsampled by a factor of ki where ki is an integer

for all i. The boxes ki " indicate that the sequence should be upsampled by

inserting ki � 1 zeros between each sample. We will assume that the integers

ki are divisors of N .

The analysis section of the A/S system takes an input sequence x(n)

of length N and performs a linear transformation to decompose it into M

sequences yi(n) of length N=ki. The synthesis section performs the inverse

operation of the analysis transformation. Here the M sequences yi(n) are

upsampled and, after �ltering with �lters gi(n), are combined additively to give

an approximation x̂(n) to the original sequence, x(n). Note that although one-

dimensional signals are indicated in the diagram, the system is equally valid

for multi-dimensional signals if we replace occurences of the scalars n; !; ki
with vectors n, !, and a matrix Ki, respectively.

The use of the A/S formulation emphasizes the computation of the trans-

form coe�cients through convolution. This is intuitively desirable since di�er-

ent regions of the image should be processed in the samemanner. Furthermore,

the expression of the problem in the frequency domain allows us to easily sep-

arate the error e(n) = x̂(n) � x(n) into two parts: an aliasing component

and a shift-invariant component. To see this, we write the contents of the

intermediate signals yi(n) in the frequency domain as

Yi(!) =
1

k

k�1X
j=0

Hi

�
!
k
+ 2�j

k

�
X
�
!
k
+ 2�j

k

�
(4.1)

and the A/S system output as

X̂(!) =
M�1X
i=0

Yi(k!)Gi(!)

where we have used well-known facts about the e�ects of upsampling and

downsampling in the frequency domain [12]. Combining the two gives
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Figure 4.2: An analysis/synthesis �lter bank.
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The �rst sum corresponds to a linear shift-invariant system response, and the

second contains the system aliasing.

4.2.2 Cascaded Systems

A further advantage of the A/S system is that it allows explicit depiction and

analysis of hierarchically constructed transformations. If we assume that we

are dealing with A/S systems with perfect response (that is, x̂(n) = x(n)), then

any intermediate signal yi(n) of an A/S system may be further decomposed

by application of any other A/S system. To make this notion more precise,

an example is given in the diagram of �gure 4.3 in which an A/S system

has been re-applied to its own intermediate signal y0(n). If the original A/S

system (as shown in �gure 4.2) had a perfect response then it is clear that the
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two-stage system shown in �gure 4.3 will also have a perfect response. If the

cascading is applied to each of theM intermediate signals yi(n), we will call the

system a uniform cascade system. Otherwise, it will be termed a non-uniform

or pyramid cascade. A system which we will discuss in section 4.3 is based

on pyramid cascades of two-band A/S systems. Such a cascade produces an

octave-width subband decomposition, as illustrated in the idealized frequency

diagram in �gure 4.4.

4.2.3 Matrix Formulation

An alternative to the frequency domain notation associated with the A/S �lter

bank is the matrix notation of linear algebra. An image of �nite extent which

has been sampled on a discrete lattice may be written as a �nite length column

vector x which corresponds to a point in RN , the set of all real N -tuples. The

value of each component of x is simply the corresponding sample value in

the image. Multi-dimensional images are converted to this vector format by

imposing an arbitrary but �xed order on the lattice positions. If we let N be

the length of the vector x, a linear transformation on the image corresponds

to multiplication of x by some matrixM with N columns.

Since the analysis and synthesis stages of the system in �gure 4.2 each cor-

respond to linear transformations, we may represent the same transformations

using matrix notation. Using the de�nition of convolution, and assuming (for

simplicity) a one-dimensional system, we may write

yi(m) =
N�1X
l=0

x(l)hi(kim� l)

and

x̂(n) =
M�1X
i=0

N
ki

�1X
m=0

yi(m)gi(n� kim)

where the �lter and image sample locations (kim� l) and (n� kim) are com-

puted modulo N . These expressions may be formulated as matrix-vector prod-

ucts

y = Htx

and

x̂ = Gy

or combining these two equations
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Figure 4.3: A non-uniformly cascaded analysis/synthesis �lter bank.
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Figure 4.4: Octave band splitting produced by a four-level pyramid cas-

cade of a two-band A/S system. The top picture represents the splitting

of the two-band A/S system. Each successive picture shows the e�ect of

re-applying the system to the lowpass subband (indicated in grey) of the

previous picture. The bottom picture gives the �nal four-level partition of

the frequency domain. All frequency axes cover the range from 0 to �.

x̂ = GHtx (4.3)

where y and x̂ are N -vectors, the superscript t indicates matrix transposition,

and

H =

2
6666666666664

h0(0) h0(k0) h1(0) h1(k1)

h0(�1) h0(k0�1) h1(�1) h1(k1�1)

h0(�2) h0(k0�2) h1(�2) h1(k1�2)
... h0(k0�3) � � � ... h1(k1�3) � � �

h0(k0�4) h1(k1�4)

h0(2)
... h1(2)

...

h0(1) h1(1)

3
7777777777775
(4.4)

and

G =

2
6666666666664

g0(0) g0(k0) g1(0) g1(k1)

g0(1) g0(k0+1) g1(1) g1(k1+1)

g0(2) g0(k0+2) g1(2) g1(k1+2)
... g0(k0+3) � � � ... g1(k1+3) � � �

g0(k0+4) g1(k1+4)

g0(�2) ... g1(�2) ...

g0(�1) g1(�1)

3
7777777777775
(4.5)
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The columns ofG, composed of copies of the �lter kernels shifted by increments

of ki and imbedded in vectors of length N , are known as the basis functions

of the transformation, and the columns of H, composed of copies of the time-

inverted �lters hi(�n) shifted by increments of ki, are the sampling functions

of the transformation.

From the discussion above, it is clear that we can express any linear A/S

system in matrix form. The converse of this result is also true: there is an A/S

system corresponding to the linear transformation and inverse transformation

de�ned by any invertible matrix M. Given a transformation matrix M with

l rows, we trivially create an analysis �lter bank with ki = N for each i,

containing l di�erent �lters, each de�ned by a row of the matrix M.

4.2.4 Inverse Transforms

A primary advantage of the matrix notation is the ease with which it can

express the conditions for transform invertibility. From equation (4.3), we see

that in order for the A/S system to perfectly reconstruct the original signal

x(n), the corresponding matrices must obey

GHt = I (4:6)

where I is the identity matrix. If H has rank N and is square, we may choose

a synthesis matrix

G = (H�1)t (4:7)

which will also be square with rank N . Thus, transform inversion in the

spatial domain is a conceptually simple procedure and we will �nd it useful

in the analysis of A/S systems. Furthermore, it should be clear that H and

G may be interchanged, thus using the basis functions as sampling functions

and vice versa.

If the matrix H is of rank N but is not square (that is, the representa-

tion is overcomplete), we may always build a perfect reconstruction system by

choosing G to be the generalized inverse or pseudo-inverse [13] of H:

G = (HHt)�1H (4:8)

If H is square, equation (4.8) reduces to the solution given in equation (4.7).

Similarly, if we start with a (possibly non-square) matrix G of rank N , we

may choose H = (GGt)�1G.
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4.2.5 Orthogonal Transforms

As mentioned in the introduction, the issue of orthogonality is usually not

considered when discussing subband �lters. It is, however, a property which

is relevant to image coding, as we will discuss in the next section. A matrix

M corresponding to an orthogonal transformation is a square matrix with the

property that

MMt =MtM = I (4:9)

In terms of the columns or basis functions of M , this means that the inner

product of any two distinct columns must be zero, and the inner product of a

column with itself must be unity.

The orthogonality condition places a number of restrictions on the corre-

sponding A/S system. Since the transformation matrix must be square, the

number of samples in the transformed signal must be equal to N , the number

of samples in the original image. For the A/S system, this means that

M�1X
i=0

1

ki
= 1

where we have assumed that N is divisible by all of the ki. Such a system has

been termed a maximally decimated or critically sampled �lter bank [11].

A second, more important constraint is placed on the A/S system by

orthogonality. Combining the perfect reconstruction requirement in (4.6) with

the orthogonality constraint in (4.9) gives

G =H

If we consider the relationships between the A/S �lters h and g and the ma-

trices H and G described by equations (4.4) and (4.5), this means that the

�lters must obey

gi(n) = hi(�n); for all i (4:10)

In other words, the synthesis �lters of an orthogonal transform are time-

inverted versions of the analysis �lters.

4.3 Some Example Transforms

In this section, we will briey discuss three one-dimensional transforms to

illustrate some of the points made in the previous sections. Each transform will

demonstrate both advantageous and disadvantageous properties for coding.
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The Gabor Transform

In the introduction to this chapter, we argued that the basis functions of a

useful decomposition should be localized in both the spatial and the spatial-

frequency domains. One solution to the problem of spatially localized subband

decomposition is that proposed by Dennis Gabor [10]. Gabor introduced a

one-dimensional transform in which the basis functions are sinusoids weighted

by Gaussian windows. The Gabor transform can be considered to perform

a localized frequency decomposition in a set of overlapping windows. The

resulting basis functions are localized in both space and spatial frequency;

in fact, Gabor showed that this joint localization was optimal with respect

to a measure that he chose (although Lerner [14] later noted that altering

the measure of joint localization produces di�erent optimal functions). The

�rst �ve basis functions of a Gabor transform are shown in �gure 4.5, along

with their frequency spectra. Both the basis functions and their transforms

are smooth and compact. In two dimensions, the Gabor basis functions are

directional sinusoids weighted by gaussian windows. Daugman [15, 16] has

used two-dimensional Gabor transforms for image compression.

The primary di�culty with the Gabor transform is that it is strongly non-

orthogonal (i.e. the sampling functions are drastically di�erent from the basis

functions). The sampling functions corresponding to the Gabor transform

(computed by inverting the transformation matrix) are depicted in �gure 4.6.

These functions are extremely poorly behaved, both in the spatial and spatial-

frequency domains. In a coding application, errors introduced by quantization

of the coe�cients will be distributed throughout the spatial and frequency

domains, even though the coe�cient values are computed based on information

in localized spatial and frequency regions.

It is interesting to note that the localization of the inverse Gabor functions

can be substantially improved if one uses an overcomplete Gabor basis set.

This can be accomplished by spacing the Gaussian windows more closely than

is required, or by dividing each window into more frequency bands. This

results in an increase in the number of coe�cients, however, which may be

disadvantageous for coding systems. The use of overcomplete Gabor sets for

coding remains a topic for further research.

Several authors have discussed related overcomplete oriented transforms

for use in image coding. Kunt [17] advocated the use of directional (i.e. ori-

entation) subdivision for image coding, and used an oriented decomposition

for this purpose. Watson [18] developed the Cortex transform, an overcom-

plete transform which decomposes the image into oriented octave-bandwidth

subbands, and used it to compress image data.
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Figure 4.5: Five of the sixteen basis functions of a Gabor �lter set, with

their corresponding Fourier transforms. The transforms are plotted on a

linear scale over the range from 0 to �.
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Figure 4.6: The inverse (sampling) functions of the Gabor �lter set given

in �gure 4.5
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The DCT and LOT Transforms

The use of the discrete cosine transform (DCT) in image coding systems is

often justi�ed with the statement that it approximates the optimal transform

for a signal with �rst-order Gauss-Markov statistics [19]. In practice, the

transform is usually not computed globally, but is applied independently to

non-overlapping sub-blocks of the image. As illustrated in �gure 4.1, the

resulting block DCT basis functions constitute a subband transform, but the

subbands are not very well localized. Considered in the framework of the

A/S system, the subsampled subband images will contain severe amounts of

aliasing. Since the transform is invertible (in fact, orthogonal), it should be

clear that this subband aliasing is cancelled in the synthesis stage. However, if

the transform coe�cients are quantized or discarded (e.g. in a coding system),

the aliasing no longer cancels, and the errors appear as block edge artifacts in

the reconstructed image.

Recent work by Cassereau et. al. [20] describes an elegant technique for

reducing the aliasing of the block DCT. They perform an orthogonal transfor-

mation on the block DCT coe�cients which combines coe�cients computed

from adjacent blocks. In the resulting transform, which they have called a

Lapped Orthogonal Transform (LOT), the basis functions from adjacent blocks

overlap each other, and their impulse responses are tapered at the edges. Mal-

var [21] has implemented an e�cient version of this transform, known as the

fast LOT, in which the additional orthogonal transformation is computed us-

ing a buttery network of simple rotation transformations. Several of the

even-symmetric basis functions of the fast LOT are shown in �gure 4.7. One

limitation which applies to both the DCT and the LOT is that the trans-

forms are limited to equal-sized subbands. As discussed previously, it may be

advantageous to subdivide the spectrum into equal log-width subbands.

The Laplacian Pyramid

One of the �rst techniques for octave subband decomposition was developed by

Burt [22] and applied to image coding by Burt and Adelson [23]. They used a

pyramid cascade of small Gaussian-like �lters to create an overcomplete sub-

band representation which they called a Laplacian pyramid. A system for

constructing one level of this pyramid (in one dimension) is illustrated in �g-

ure 4.8. The signal is blurred with a lowpass �lter, B(!), and then subsampled

to produce a lowpass subband W0(!). A highpass subband, W1(!), is formed

by upsampling W0(!), convolving with an interpolation �lter A(!), and sub-

tracting from the original signal. The signal is reconstructed by upsampling

and �ltering W0(!) with A(!) and adding it to W1(!). This reconstruction is
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Figure 4.7: Five of the eight even-symmetric basis functions of a LOT.

The basis functions are illustrated on the left, and their Fourier transforms

on the right. The transforms are plotted on linear axes and cover the range

from 0 to �.
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Figure 4.8: Signal processing diagram depicting the standard construction

technique for one level of the Laplacian pyramid. A full pyramid is built

by non-uniformly cascading this system. This transformation may also be

described as an A/S �lter bank (see text).

exact, regardless of the choice of the �lters B(!) and A(!). The full pyramid

is constructed recursively, by re-applying the system to the lowpass subband.

Typically, the �lters A(!) and B(!) are set to some common, compact lowpass

�lter, although better coding results are obtained by choosing the two �lters in-

dependently. Some example basis and sampling functions (with A(!) = B(!))

are plotted in �gures 4.9 and 4.10, respectively.

In addition to its suitability for data compression, the multi-scale nature

of the pyramidmakes it particularly useful for the task of progressive transmis-

sion. Progressive transmission is a process by which an image is sent through

a low-capacity channel so that a low resolution or blurred version of the im-

age becomes available quickly, and higher resolution information is added in

a gradual manner. In the case of a pyramid, this is easily accomplished by

sending the transform coe�cients in order from lowest to highest resolution.

For comparison to other subband transforms, we have re-formulated the

Laplacian pyramid scheme as a three-band A/S system (see diagram in �g-

ure 4.2) by separating W1(!) into two subsignals: Y1(!) contains the even-

numbered samples, and Y2(!) contains the odd-numbered samples. The sub-

sampling factors are k = 2 for all three A/S branches, thus producing a repre-

sentation that is overcomplete by a factor of 3=2. The appropriate �lters for

the A/S system are de�ned in terms of the original �lters A(!) and B(!) as

follows:

H0(!) = B(!); G0(!) = A(!)

H1(!) = 1

2

h
1�B(!)A(!)�B(!)A(! + �)

i
; G1(!) = 1

H2(!) = ej!

2

h
1 �B(!)A(!) +B(!)A(! + �)

i
; G2(!) = e�j!
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Figure 4.9: Five example basis functions of a four level Laplacian pyramid.
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Figure 4.10: Five example inverse (sampling) functions of the Laplacian

pyramid.
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Notice that when A(!) and B(!) are lowpass �lters, the sampling functions

are bandpass and the basis functions are broadband. Since the resulting A/S

system violates the constraint in equation 4.10, the transform is clearly not

orthogonal. In two dimensions, Burt and Adelson constructed Laplacian pyra-

mids using the same algorithm, but with a separable two-dimensional blurring

�lter. The two dimensional Laplacian pyramid may be re-formulated as a

5-band A/S system with each band subsampled by a factor of two both hori-

zontally and vertically.

The Laplacian pyramid has certain disadvantages for image coding. The

most serious of these is the fact that quantization errors from highpass sub-

bands do not remain in these subbands. Instead, they appear in the recon-

structed image as broadband noise. As with the Gabor transform, the non-

orthogonality of the transform is the source of the di�culty. Furthermore,

the basis set is overcomplete, requiring an increase (in two dimensions) by a

factor of 4

3
in the number of sample points over the original image. Finally,

the two-dimensional basis functions are not oriented, and thus will not ex-

tract the oriented structural redundancy typically found in natural images.

Despite these disadvantages for still-image coding, the Laplacian pyramid has

been e�ectively used for motion-compensated video coding, where its overcom-

pleteness makes it robust in to motion-compensation errors [24].

4.4 Quadrature Mirror Filters

In the previous section, we described three example transforms, each demon-

strating useful properties for coding. Now we consider a transform which

captures the advantages of the previous examples, while avoiding the disad-

vantages.

As was illustrated with the Laplacian pyramid, an octave subband trans-

form may be constructed by cascading a two-band A/S system in a non-

uniform manner. A useful two-band subband transform which was developed

for speech coding is based on banks of quadrature mirror �lters (QMF), de-

veloped by Croiser et. al. [25, 26]. They discovered a class of non-ideal FIR

bandpass �lters that could be used in an A/S system while still avoid aliasing

in the overall system output. Although they did not describe them as such,

these �lters form an orthogonal subband transform, as was discussed by Adel-

son et al. [27] and Mallat [3, 28]. Mallat related QMFs to the mathematical

theory of wavelets. Vetterli [29] was the �rst to suggest the the application of

QMFs to two-dimensional images. In this section, we give a brief review of

QMFs in one dimension. A more thorough review may be found in [30] or [31].
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The original QMF problem was formulated as a two-band critically sam-

pled analysis/synthesis �lter bank problem. The overall system response of

the �lter bank is given by equation (4.2), with subsampling factor on each

branch set to k = 2:

X̂(!) =
1

2

h
H0(!)G0(!) +H1(!)G1(!)

i
X(!)

+
1

2

h
H0(! + �)G0(!) +H1(! + �)G1(!)

i
X(! + �): (4.11)

The �rst term is a linear shift-invariant (LSI) system response, and the second

is the system aliasing.

The term QMF refers to a particular choice of �lters that are related by

spatial shifting and frequency modulation. We de�ne

H0(!) = G0(�!) = F (!)

H1(!) = G1(�!) = ej!F (�! + �) (4.12)

for F (!) an arbitrary function of !. This is a more general de�nition than that

originally provided by Croisier et. al., and makes explicit the orthogonality

of the transform (see section 4.2.5). In particular, the analysis and synthesis

�lters satisfy the relationship in equation (4.10), and the relationship between

the �lters in the two branches (i.e. H0 and H1) ensures that the corresponding

basis functions are orthogonal.

With the choice of �lters given in (4.12), equation (4.11) becomes

X̂(!) =
1

2

h
H(!)H(�!) +H(�! + �)H(! + �)

i
X(!)

+
1

2

h
H(! + �)H(�!) + ej�H(�!)H(! + �)

i
X(! + �):

The second (aliasing) term cancels, and the remaining LSI system response is

X̂(!) =
1

2

h
H(!)H(�!) +H(�! + �)H(! + �)

i
X(!): (4:13)

Note that the aliasing cancellation is exact, independent of the choice of the

function F (!). We should emphasize, however, that it is the overall system

aliasing that cancels | the individual subbands do contain aliasing.

4.4.1 QMF Design

The design problem is now reduced to �nding a lowpass �lter with Fourier

transform H(!) that satis�es the constraint

1

2

h
H(!)H(�!) +H(�! + �)H(! + �)

i
= 1
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or ���H(!)
���2 + ���H(! + �)

���2 = 2: (4:14)

Several authors have studied the design and implementation of these �lters [32,

33, 34, 35, 36]. Johnston [32] designed a set of widely used even-length �lters

by minimizing an error function containing a shift-invariant error term and

a weighted stopband ripple term for a �xed number of �lter taps. Jain and

Crochiere [33, 34] used a similar error criterion in the time domain, and for-

mulated an iterative design scheme which in which each iteration required the

constrained minimization of a quadratic function.

A technique for design of perfect reconstruction �lter sets is given by Smith

and Barnwell in [37]. They �rst design a lowpass product �lter F (!) which is

factorable as

F (!) =
���H(!)

���2
and which satis�es

f(n) �
�
1 + (�1)n

�
2

= �(n)

The resulting F (!) is factored to get h(n), the lowpass �lter. Wackersreuther [35]

independently arrived at a similar design method in the time domain. The

problem with these design methods is the somewhat arbitrary choice of the

product �lter.

Simoncelli [36] proposed an exploratory design method utilizing an itera-

tive matrix averaging technique, and designed a set of odd-length �lters using a

frequency-sampling method with error criteria similar to Johnston. The design

constraints for QMFs do not necessitate sharp transitions and thus frequency-

sampling designs perform quite well. Furthermore, it was found that odd-

length �lters could be made smaller for a given transition band width. The

basis functions for a four-level QMF pyramid based on a 9-tap kernel are shown

in �gure 4.11. A set of example QMF kernels and a more detailed description

of this design technique are given in the appendix to this chapter.

QMFs are typically applied to images in a separable manner. In order

to compute a multi-scale pyramid, the transform is applied recursively to the

lowpass subimage. Such a cascaded transformation partitions the frequency

domain into octave-spaced oriented subbands, as illustrated in the idealized

frequency diagram of �gure 4.12. Thus, the QMF pyramid satis�es the prop-

erties described in the introduction to this chapter: it is multi-scale and ori-

ented, it is spatially localized, and it is an orthogonal transformation, and so

constrains quantization errors to remain within subbands. One unfortunate

aspect of the transform is that the orientation decomposition is incomplete.
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Figure 4.11: Five of basis functions of a 9-tap QMF pyramid transform.
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The two diagonal orientations are lumped together in a single subband. We

will address this problem in section 4.5.

4.4.2 An Asymmetrical System

Thus far, we have ignored the issue of computational e�ciency. For many

applications, this is relatively unimportant due to the steady increase in the

speed of signal processing hardware. There are, however, situations where

it is desirable to quickly decode or encode a coded image using conventional

or general-purpose hardware. For example, an image data base that will be

accessed by millions of users with personal computers should be quickly decod-

able on standard hardware; the cost of encoding these images is of relatively

minor importance as long as the decoding is simple. At the other extreme, a

remotely piloted vehicle demands a very simple encoding scheme in order to

minimize weight and power requirements.

For these situations, it is advantageous to develop asymmetric coding tech-

niques in which simplicity is emphasized at one end at the expense of com-

plexity at the other end. For a QMF transform, the computational complexity

is directly proportional to the size of the �lters employed. Thus, we wish

to relax the orthogonality constraint which forces the synthesis �lters to be

time-reversed copies of the analysis �lters. Consider the situation in which we

require e�cient decoding. The increase in e�ciency can be accomplished by

using a very compact �lter pair in the synthesis stage of an A/S system [27, 38].

In particular, one can choose the 3-tap lowpass �lter g0(n) = [1; 2; 1], with a

highpass counterpart g1(n) = [�1; 2;�1]. Convolutions with these �lters may

be performed using only arithmetic shifting and addition operations.

The relationship G1(!) = ej!G0(�! + �), as in equation (4.12) ensures

that the linear subspaces spanned by the basis functions corresponding to each

�lter will be orthogonal. Conceptually, a set of inverse �lters hi(n) is found

by forming a square matrix of the gi(n) as in equation (4.5) and inverting it.

The size of the matrix determines the size of the resulting inverse �lters. In

practice, a better design technique is to minimize an error function for a given

kernel size. We have designed a set of inverse �lters (given in the appendex)

by minimizing the maximal reconstruction error for a step edge input signal.

These kernels are given in the appendix.

Another highly e�cient A/S system was proposed by LeGall. He derived

the following set of simple �lters for use in an A/S �lter bank:

H0(!) = A(!); G0(!) = B(!)

H1(!) = ej!B(! + �); G1(!) = e�j!A(! + �)
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Figure 4.12: Idealized diagram of the partition of the frequency plane

resulting from a 4-level pyramid cascade of separable 2-band �lters. The

top plot represents the frequency spectrum of the original image, with axes

ranging from �� to �. This is divided into four subbands at the next

level. On each subsequent level, the lowpass subband (outlined in bold) is

subdivided further.
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where the �lter kernels (impulse responses) corresponding to A(!) and B(!)

are

a(n) = [1; 2; 1]

b(n) = [�1; 2; 6; 2;�1]

Note that the de�nitions of a(n) and b(n) may be interchanged. These �lters

allow e�cient encoding and decoding, and provide exact reconstruction (with

perfect aliasing cancellation).

4.5 Non-separable QMF Transforms

In the previous section, we described the separable QMF pyramid transform.

Most two-dimensional work with QMFs has employed separable �lters or non-

oriented non-separable �lters [29]. As discussed in the previous section, sepa-

rable application of one-dimensional QMFs produces a representation in which

one of the subbands contains a mixture of two orientations. This problem is

inherent in the rectangular sampling scheme. Rectangular sampling of a sig-

nal in the spatial domain corresponds to summing aliased or modulated copies

of the spectrum in the frequency domain. Thus, the frequency response of

any rectangularly sampled function has the same value at the points (�; �),

(��; �), (�;��), and (��;��) (i.e. this point corresponds to two opposing

orientations). Splitting the frequencies in the neighborhood of this point into

di�erent orientation bands requires the use of very large �lters. In general, the

high-frequency diagonal regions of the spectra of natural images are relatively

insigni�cant. But if the �lter bank is cascaded to form a pyramid, then the

lower frequency diagonals (where there is signi�cant power) will also be mixed.

4.5.1 Hexagonal Systems

In this section, we will discuss the use of hexagonal sampling systems and �l-

ters. We will show that the mixed orientation problem discussed above can be

avoided by using hexagonally symmetric �lters. This non-separable extension

of the QMF concept was �rst described by Adelson et al. [27] and improved

and generalized in later work [36, 39]. Other authors have also explored the

use of hexagonal sampling systems for image representation. Crettez and Si-

mon [40] and Watson [41] describe decompositions on hexagonal lattices using

non-overlapping basis functions. The blocked nature of these functions sug-

gests that they are unlikely to o�er e�cient image compression.
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Figure 4.13 shows a hexagonal sampling lattice and its Fourier transform.

The sampling lattice is de�ned by a pair of sampling vectors in the plane:

v0 =

 p
3=2

1=2

!
; v1 =

 
0

1

!
:

The locations of the lattice points consist of all linear combinations of these

vectors with integer coe�cients. In the frequency domain, the e�ect of this

sampling is to convolve the original frequency spectrum of the image with a

modulation or reciprocal lattice which is the Fourier transform of the sampling

lattice. The modulation lattice is de�ned by a pair of modulation vectors in

the frequency plane:

~v0 =

 
4�=

p
3

0

!
; ~v1 =

 
�2�=p3

2�

!
:

Thus if F (!) is the Fourier transform of a hexagonally sampled signal (image)

then it is invariant to translations by multiples of the vectors ~vi:

F (!) = F (! + n0 ~v0 + n1 ~v1) (4:15)

for n0 and n1 any two integers.

In general, the relationship between the sampling vectors and modulation

vectors is easily described in terms of matrices [42, 43]. If we consider the

sampling matrix V with columns containing the vectors vi and the modulation

matrix ~V with columns containing the vectors ~vi, then the two matrices are

related by the equation
~V = 2�(V�1)t: (4:16)

Note that we know V is invertible since we assume that the sampling vectors

span the space (i.e. they are linearly independent).

As stated in section 4.2.1, the A/S system depicted in �gure 4.2 is valid

for two-dimensional signals, but the �ltering and subsampling is done in two

dimensions: ! is now a two-dimensional vector, and the subsampling is pa-

rameterized by a non-singular two-by-two subsampling matrix,K, with integer

entries. Figure 4.14 illustrates two-dimensional subsampling in both the spa-

tial and frequency domains.

In order to write a general expression for the output of a multi-dimensional

analysis/synthesis system, we need a frequency-domain equation analogous to

that given in (4.1) relating the subsampled signal to the sampled signal. We

also need an equation relating an upsampled signal to the original sampled

signal. For rectangular sampling lattices in d dimensions, the relationship is

simple. The sampling matrix K generates a sublattice de�ned by

fn : n = Km;m 2 Zdg;
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Figure 4.13: Relationship between hex sampling lattices in the spatial and

spatial-frequency domains. On the left is the lattice de�ned by the sampling

vectors. On the right is the Fourier transform of this lattice, de�ned by the

modulation vectors.

Figure 4.14: Illustration of subsampling on a hexagonal lattice. The

points in the diagram on the left represent the original sampling lattice

and the circles represent the subsampled lattice points. The picture on the

right shows the Fourier transform of the lattice (points) and the Fourier

transform of the subsampled lattice (circles).
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where Zd is the set of all d-dimensional vectors with integer components. The

sublattice has jKj distinct cosets, each coset being a copy of the sublattice

translated by an integer vector, and the union of the cosets is the original

sampling lattice [44]. Consider two signals related by subsampling: s(n) =

r(Kn). Then their Fourier transforms are related by the expression

S(!) =
1

jKj
jKj�1X
i=0

R
�
(K�1)t(! � 2�ki)

�

where S(!) and R(!) are the Fourier transforms of s(n) and r(n) respectively,

and the ki are a set of polyphase shift vectors corresponding to each of the

jKj sublattice cosets [44]. A simple example of a set of shift vectors is the

following: n
k : (K�1)tk 2 [0; 1)d;k 2 Zd

o
;

where [0; 1)d is the half-open unit interval in d dimensions.

The corresponding expression for non-rectangular sampling lattices is ob-

tained by mapping from the rectangular case. The result of subsampling in

the analysis/synthesis system may then be written as a convolution of the

sampled spectrum with a set of subsampling modulation vectors ~�j:

Yi(!) =
1

jKj
jKj�1X
j=0

Hi

�
(K�1)t! + ~�j

�
X
�
(K�1)t! + ~�j

�
; (4:17)

where the ~�j are de�ned as

n
~�j : j = 0; 1; : : : ; jKj � 1

o
=

n
~V(K�1)tn : (K�1)tn 2 [0; 1)d;n 2 Zd

o
: (4.18)

The e�ect of upsampling in the frequency domain is the same as for the rect-

angular case [43]. Combining equation (4.17) with the frequency domain up-

sampling relationship gives an expression for the overall �lter bank response:

X̂(!) =
1

jKj
jKj�1X
i=0

Gi(!)Yi(K
t!)

=
1

jKj
jKj�1X
i=0

Gi(!)

jKj�1X
j=0

Hi(! + ~�j)X(! + ~�j)

=
1

jKj
jKj�1X
j=0

X(! + ~�j)

2
4jKj�1X

i=0

Gi(!)Hi(! + ~�j)

3
5 : (4.19)
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Figure 4.15: Illustration of the modulating e�ect of subsampling in the

frequency domain. Assume that the sampled image has a spectrum ban-

dlimited to the gray region in the upper left frequency diagram. Subsam-

pling will modulate the spectrum to the gray regions in the other three

diagrams. The resulting spectrum will be the sum of the four spectra.

As in equation (4.11), the �rst term of the sum (j = 0) corresponds to the LSI

system response, and the remaining terms are the system aliasing.

Returning now to the speci�c case of the hexagonal sampling lattice, we

describe a system obtained by using a speci�c sampling matrix K. Since we

want to be able to apply the transform recursively, we choose a subsampling

scheme which preserves the geometry of the original sampling lattice:

K =

"
2 0

0 2

#
:

On the hexagonal sampling lattice with this subsampling scheme, the de�nition

given in (4.18) produces the following modulation vectors:

~�0 =

 
0

0

!
; ~�1 =

 
2�=

p
3

0

!
; ~�2 =

 
�=

p
3

�

!
; ~�3 =

 
��=p3

�

!
:

Figure 4.15 o�ers an idealized picture of this modulation.

Analogous to the one-dimensional case, we can choose the �lters to elim-

inate the aliasing terms in equation (4.19):

H0(!) = G0(�!) = F (!) = F (�!)
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H1(!) = G1(�!) = ej!�s1F (! + ~�1)

H2(!) = G2(�!) = ej!�s2F (! + ~�2)

H3(!) = G3(�!) = ej!�s3F (! + ~�3) (4.20)

where H is a function that is invariant under negation of its argument, the

si are a set of spatial shift vectors (de�ned in the next paragraph), and the

expressions ! � si indicates an inner product of the two vectors. As in equa-

tion (4.12), the �lters are related by spatial shifting and frequency modulation.

For the subsampling matrix we are using here, there are four sublattice cosets

and therefore four distinct shifting vectors (including the zero vector). Two

assignments of the si lead to system aliasing cancellation, and these two as-

signments are related by reection through the origin. So without loss of

generality, we choose the shifting vectors to be

s1 =

 p
3=2

1=2

!
; s2 =

 
0

1

!
; s3 =

 
�p3=2

1=2

!
:

After cancellation of the aliasing terms in equation (4.19), the remaining

LSI system response is

X̂(!) =
1

4
X(!)

3X
i=0

Gi(!)Hi(!)

=
1

4
X(!)

3X
i=0

F (�!+ ~�i)F (! + ~�i)

=
1

4
X(!)

3X
i=0

jF (! + ~�i)j2 : (4.21)

As in one dimension, the aliasing cancellation is exact, independent of the

choice of F (!), and the design problem is reduced to �nding a �lter with

Fourier transform F (!) satisfying the constraint

3X
i=0

jF (! + ~�i)j2 = 4: (4:22)

This is analogous to the one-dimensional equation (4.14). Again, a lowpass

solution will produce a band-splitting system which may be cascaded hier-

archically to produce an octave-bandwidth decomposition in two dimensions.

An idealized illustration of this is given in �gure 4.16. Finer frequency and ori-

entation subdivisions may be achieved by recursively applying the �lter bank

to some of the high frequency subbands, as illustrated in �gure 4.17.

Filters may be designed using the methods described in section 4.4.1 [39].

Several example �lter sets are given in the appendix to this chapter. The
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Figure 4.16: Idealized diagram of the partition of the frequency plane

resulting from a four-level pyramid cascade of hexagonal �lters. The top

plot represents the frequency spectrum of the original image. This is divided

into four subbands at the next level. On each subsequent level, the lowpass

subband (outlined in bold) is sub-divided further.
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ω

ω

x

y

Figure 4.17: An example of a frequency-domain partition which could

be computed using a non-pyramid cascade of the hexagonal �lter bank

transform described in the text. The shaded region indicates the frequency

region associated with one of the transform subbands.

power spectra of an example set of �lters (the \4-ring" �lters) are plotted in

�gure 4.18. These �lters are extremely compact, requiring only nine multipli-

cations per convolution point (assuming one takes advantage of the twelve-fold

hexagonal symmetry). Figure 4.19 shows the results of applying this bank of

�lters recursively to an image of a disk. Examples of images coded using these

�lters will be given in section 4.6.

4.5.2 Rhombic Dodecahedral Systems

The extension of the concepts developed in the previous section to three-

dimensional signal processing is fairly straightforward. Such systems are use-

ful for applications such as compression of medical images or video motion

sequences. Analogous to the two-dimensional hexagonal case, one can choose

a periodic sampling lattice which corresponds to the densest packing of spheres
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Figure 4.18: The power spectra for the \4-ring" set of hexagonal QMF

�lters. The �lter kernels are given in the appendix.
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(a) (b) (c)

Figure 4.19: Results of applying a hexagonal QMF bank to an image of

a disk. (a) The original image. (b) The result after one application of the

analysis section of the �lter bank. The image has been decomposed into a

lowpass and three oriented high-pass images at 1/4 density. (c) The result

of applying the �lter bank recursively to the lowpass image to produce a

two-level pyramid decomposition.

in three dimensions. This packing corresponds to the crystal structure of gar-

net. We choose as a band limiting region the Voronoi region of this lattice

(a rhombic dodecahedron) which is illustrated in �gure 4.20. The sampling

matrix for the lattice is

V =

2
64
2 1 1

0 1 0

0 0 1=
p
2

3
75 :

Using equation (4.16), the modulation matrix is then

~V =

2
64

� 0 0

�� 2� 0

�p2� 0 2
p
2�

3
75 :

To preserve the geometry of the original sampling lattice, we choose an

eight-band A/S system with subsampling matrix

K =

2
64
2 0 0

0 2 0

0 0 2

3
75 :

This produces the following subsampling modulation points, as determined by

equation (4.18):

~�0 =

0
B@

0

0

0

1
CA ; ~�1 =

0
B@

0

�p
2�

1
CA ; ~�2 =

0
B@

0

�

0

1
CA ; ~�3 =

0
B@

�=2

�=2

��=p2

1
CA ;
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Figure 4.20: A rhombic dodecahedron. This is the shape of the bandlim-

iting frequency region for the \garnet" �lter.

~�4 =

0
B@

�=2

��=2
�=

p
2

1
CA ; ~�5 =

0
B@

�=2

��=2
��=p2

1
CA ; ~�6 =

0
B@

�=2

�=2

�=
p
2

1
CA ; ~�7 =

0
B@

0

0p
2�

1
CA :

When applied to video motion sequences, these modulation vectors correspond

to a decomposition into the following subbands: lowpass, stationary vertical,

stationary horizontal, motion up/right, motion up/left, motion down/right,

motion down/left, and combined stationary diagonals and full-�eld icker.

Unfortunately, there seems to be no way to avoid the last �lter which contains

mixed orientations. The overall system response of the �lter bank is

X̂(!) =
1

8

7X
j=0

X(! + ~�j)

"
7X

i=0

Gi(!)Hi(! + ~�j)

#
: (4:23)

where the �rst term is the LSI system response, and the remaining terms are

aliasing terms.

Once again, we can choose �lters related by shifts and modulations that

will cancel the system aliasing terms:

H0(!) = G0(�!) = F (!) = F (�!)
Hi(!) = Gi(�!) = ej!�siF (! + ~�i); i 2 f1; 2; :::7g

where the shift vectors si are de�ned as

s0 =

0
B@

0

0

0

1
CA ; s1 =

0
B@

1

0

1=
p
2

1
CA ; s2 =

0
B@

1

1p
2

1
CA ; s3 =

0
B@

1

2

1=
p
2

1
CA ;
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s4 =

0
B@

2

1

1=
p
2

1
CA ; s5 =

0
B@

2

0

0

1
CA ; s6 =

0
B@

1

1

0

1
CA ; s7 =

0
B@

0

1

1
p
2

1
CA :

Note that as in the hexagonal case, the choice of shift vectors is not unique.

With the choice of �lters given above, the aliasing terms in equation (4.23)

cancel and the remaining LSI system response is

X̂(!) =
1

8
X(!)

7X
i=0

jF (! + ~�i)j2 ;

independent of the choice of the function F (!). The design constraint equation

is now
7X
i=0

jF (! + ~�i)j2 = 8:

To illustrate the use of the garnet �lter, we apply it to an image sequence

of a sinusoidal pinwheel rotating in a counterclockwise direction. One frame

of the sequence is shown in �gure 4.21(a). The squared responses of the four

di�erent motion-selective �lters (�lters H3(!) through H6(!)) are shown in

�gure 4.21(b-e).

4.6 Image Coding Examples

Several authors have used QMFs for purposes of image coding. Woods and

O'Neill [45] were the �rst to implement an image coding system using QMFs.

They constructed a separable sixteen-band decomposition using a uniform

cascade of 32- and 80-tap �lters designed by Johnston [32], and then coded

the bands using adaptive DPCM. Gharavi and Tabatabai [46] used a pyramid

of separable �lters and in [47], applied it to color images. Tran et. al. [48] used

an extension of Chen and Pratt's [49] combinedHu�man and run-length coding

scheme to code QMF pyramids. Adelson et al. have used both separable and

hexagonal QMF pyramids for image coding [27, 36, 39]. Mallat [3] used �lters

derived from wavelet theory to code images. Westerink et. al. [50] have used

vector quantization for subband coding of images.

In �gures 4.22 and 4.23, we give examples of data compression of the

256�256 \Lena" image using a separable 9-tap QMF bank, a 3-tap asymmetric

�lter bank (described in section 4.4.2), and a hexagonal \4-ring" QMF bank. In

all cases, a four-level pyramid transform was computed by recursive application

of the analysis portion of the A/S system to the lowpass image. The total bit
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Figure 4.21: At the top is one image from a rotating pinwheel image

sequence. The four lower images are the squared result of convolving the

sequence with four of the \garnet" �lters described in the text. Each �lter

responds preferentially to one direction of motion.
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rate R was �xed and the bit rates assigned to the coe�cients of the transform

were determined using the standard optimal allocation formula [19]:

Rk = R +
1

2
log2

�2k2
4N�1Y
j=0

�2j

3
5
1=N

(4:24)

where, as before, �2k is the variance of the kth coe�cient in the transform.

Negative values of Rk were set to zero and the other bit rates raised to maintain

the correct overall bit rate R.

Note that if we assume stationary image statistics, the �2k are the same for

all coe�cients belonging to the same sub-image of the transform. It has been

shown [19] that the optimal quantizer for entropy coding is nearly uniform

for bit rates which are high enough that the image probability distribution is

approximately constant over each bin. Even though the examples shown were

compressed to relatively low bit rates, uniform quantization was used due to

its simplicity. Each sub-image was quantized with the bin size chosen to give

a �rst order entropy equal to the optimal bit rate Rk for that subimage.

For the hexagonal pyramid, additional pre- and post-processing was neces-

sary to resample the image on a hexagonal grid. Before building the pyramid,

we resampled the original image vertically by a factor of 7=4 using sinc inter-

polation. We then multiplied by the function f(n) = 1 + (�1)(nx+ny). This

method, which is similar to one suggested in [42], gives a reasonable geomet-

ric approximation to a hexagonal sampling lattice. After re-synthesizing the

image, we interpolated the zero-valued pixels and vertically resampled by a

factor of 4=7.

The hexagonal QMF system generally o�ers coding performance percep-

tually superior to that of the separable system, perhaps because the aliasing

errors are not as visually disturbing as those of separable QMFs. Of course,

the hexagonal system has the disadvantage of being more inconvenient to use

in conjunction with standard hardware.

4.7 Conclusion

We have discussed the properties of linear transforms that are relevant to the

task of image compression. In particular, we have suggested that the basis and

sampling functions of the transform should be localized in both the spatial and

the spatial-frequency domains. We have also suggested that it is desirable for

the transform to be orthogonal.
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(a) (b)

(c) (d)

Figure 4.22: Data compression example using four-level pyramids. The

pyramid data was compressed to a total of 65536 bits (i.e. total �rst-order

entropy was 1.0 bit/pixel). (a) Original \Lena" image at 256� 256 pixels.

(b) Compressed using 9-tap separable QMF bank. (c) Compressed using

3-tap asymmetrical �lter bank. (d) Compressed using \4-ring" hexagonal

QMF bank.
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(a) (b)

(c) (d)

Figure 4.23: Data compression example using four-level pyramids. The

pyramid data was compressed to a total of 16384 bits (i.e. total �rst-order

entropy was 0.25 bit/pixel). (a) Original \Lena" image at 256� 256 pixels.

(b) Compressed using 9-tap separable QMF bank. (c) Compressed using

3-tap asymmetrical �lter bank. (d) Compressed using \4-ring" hexagonal

QMF bank.
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Several examples serve to illustrate these properties. The Gabor basis

functions are well-localized, but the severe non-orthogonality of the transform

leads to sampling functions which are very poorly localized. The block DCT

is an equal-width subband transform with poor frequency localization. The

LOT enhancement provides improved frequency localization. The Laplacian

pyramid is an example of an octave-width subband transform that is non-

orthogonal, non-oriented and overcomplete; its properties are non-optimal for

coding still images, but may be advantageous for coding moving images.

Subband transforms based on banks of QMFs are well-localized, orthogo-

nal, and can be applied recursively to form octave-width subbands. Separable

application of these transforms o�ers orientation speci�city in some but not

all of the subbands. Non-separable orthogonal subband transforms based on

hexagonal sampling o�er orientation speci�city in all of the subbands, although

they are more di�cult to implement. These orthogonal subband transforms

are highly e�ective in image coding applications, and may also be appropriate

for applications in image enhancement and machine vision tasks.

Appendix: Filters

In this appendix, we discuss the design of QMFs, present a set of example

�lter kernels, and compare their theoretical energy compaction properties to

those of the DCT and LOT transforms.

Filter Design

A \good" QMF is one that satis�es the constraint given in equation (4.14).

In addition, one would like the sub-band images to have a minimal amount of

aliasing. The objective then is to design �lters with small regions of support

that satisfy both of these constraints. Assuming symmetric (linear phase) �lter

designs, a �lter of size N is determined by a set of dN=2e free parameters,

where d�e indicates the ceiling function. Therefore, �lters may be designed by

minimizing an error function de�ned on the space of these free parameters.

For a �xed �lter size, we de�ne a frequency-domain �lter bank error func-

tion as the maximal deviation of the overall �lter bank response given in

equation (4.13) from its ideal value:

E1 = max
!

n
f1(!)

���jF (!)j2 + jF (! + �)j2 � 2
���o

where ! ranges over the samples in the frequency spectrum. The function

f1(!) is a frequency weighting function roughly matched to the sensitivity of
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n QMF-5 QMF-9 QMF-13

0 0.8593118 0.7973934 0.7737113

1 0.3535534 0.41472545 0.42995453

2 -0.0761025 -0.073386624 -0.057827797

3 -0.060944743 -0.09800052

4 0.02807382 0.039045125

5 0.021651438

6 -0.014556438

Table 4.1: Odd-length QMF kernels. Half of the impulse response sample

values are shown for each of the normalized lowpass QMF �lters (All �lters

are symmetric about n = 0). The appropriate highpass �lters are obtained

by delaying by one sample and multiplying with the sequence (�1)n.

the human visual system and the statistics of images:

f1(!) = 1=j!j:

We also de�ne an intra-band aliasing error function:

E2 = max
!0

ff2(!0) jF (�!0)F (!0 + �)jg

where the function f2(!
0) is de�ned as

f2(!
0) = 1=j!0j2:

The frequency vector !0 ranges over all of the samples in the frequency spec-

trum, except for the point at �=2. Aliasing within subbands cannot be elimi-

nated at this point because the overall �lter bank response at this point would

then be forced to zero, violating the constraint in equation (4.14).

Finally, we combine the two error functions as a weighted sum:

E = �E1 + (1 � �)E2; � 2 [0; 1]:

Given a set of values for the free parameters, we can construct a kernel and

compute the value of the error function E. To design �lters, we used a downhill

simplex method to search the space of free parameters for minima in E. The

weighting factor � was adjusted to give a �lter bank response error E1 less

than a �xed threshold. A set of example odd-length �lter kernels are given in

table 4.1.

The same design technique was used for multi-dimensional non-separable

�lters. For the hexagonally symmetric �lters, the free parameters comprise a

wedge-shaped region covering approximately one twelfth of the kernel. The
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two error functions are de�ned in the same manner as for the one-dimensional

�lters. The frequency vector !0 now ranges over all of the samples in the two-

dimensional frequency spectrum, except for those in a hexagonal boundary

containing the point (0; �
2
). A set of kernel values is given in table 4.3

In table 4.4 we give several inverse �lters for the 3-tap asymmetrical system

described in section 4.4.2. These kernels were designed by minimizing the

maximal absolute-value reconstruction error for a step edge input signal.

Filter Compaction Properties

An optimal transform for data compression should minimize the bit rate for a

given allowable error in the reconstructed image. If the basis functions of the

transform are orthonormal, and if expected mean square di�erence is used as

an error measure, this is equivalent to maximizing the following expression for

the gain in coding over PCM [19, 45]:

G =

1

N

N�1X
j=0

�2j

2
4N�1Y
j=0

�2j

3
5
1=N

where �2j is the variance of the jth transform coe�cient.

This measure was computed for some of the one-dimensional QMF �lters

given in this Appendix, as displayed in table 4.5. Values were computed as-

suming Markov second order signal statistics, where the autocorrelation matrix

Rxx is a symmetric Toeplitz matrix of the form

Rxx =

2
66666664

1 � �2 � � � �N

� 1 � �(N�1)

�2 � 1 �(N�2)

...
. . .

�N �(N�1) �(N�2) 1

3
77777775

and where � is the inter-sample correlation coe�cient. A value of � = 0:95

was used to compute the numbers given in table 4.5. The compaction values

are given for a one-dimensional image of size N = 256 with the QMF �lter

kernels reected at the edges in a manner that preserves the orthogonality of

the basis set [36]. Comparable values for the 16-point LOT (with kernel sizes

L=32) and a 16-point block DCT and a 32-point block DCT are also given.
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j k l l k j

k g h i h g k

l h e f f e h l

l i f c d c f i l

k h f d b b d f h k

j g e c b a b c e g j

k h f d b b d f h k

l i f c d c f i l

l h e f f e h l

k g h i h g k

j k l l k j

Table 4.2: A hexagonal �lter. The letters refer to the free parameters

(see text). Only the low-pass �lter is shown. The three highpass �lters are

formed by modulating and shifting the low-pass.

Parameter 3-ring 4-ring 5-ring

a 0.59290695 0.6066799 0.60879886

b 0.32242984 0.3162482 0.31689283

c -0.016686682 -0.028019974 -0.027267352

d -0.061579883 -0.0016289932 -0.012790751

e -0.0020203826 -0.02741341 -0.03874194

f -0.0038235565 -0.038143888 -0.02383056

g -0.005958891 0.0008673751

h 0.019682134 0.015554102

i 0.016045252 0.0080001475

j -0.0009099232

k 0.0022140248

l -0.0010486352

Table 4.3: Some example hexagonal �lter coe�cient values. The parame-

ter letters correspond to the diagram shown in table 4.2
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n 15 17 21

0 0.8648855700 0.8662753700 0.8660005000

1 0.3589060300 0.3588442800 0.3586960400

2 -0.1476441600 -0.1488108800 -0.1486006000

3 -0.0618851260 -0.0616580880 -0.0615359620

4 0.0244434030 0.0257062400 0.0255328510

5 0.0106931890 0.0102884290 0.0105768030

6 -0.0030558493 -0.0044906090 -0.0043832410

7 -0.0015278960 -0.0012884160 -0.0017810371

8 0.0006442405 0.0007449251

9 0.0002303323

10 -0.0001151661

Table 4.4: Filter impulse response values for 15, 17, and 21-tap inverses

for the 3-tap system described in section 4.4.2. Half of the impulse response

sample values are shown for each of the normalized lowpass �lters (All �lters

are symmetric about n = 0). The appropriate highpass �lters are obtained

by multiplying with the sequence (�1)n and shifting by one pixel.

The 9-tap subband �lter gives slightly better value than the 16-point DCT,

and the 13-tap subband �lter is substantially better. These comparisons do not

necessarily correspond to measurements of subjective quality, however, since

they are based on a crude Markov statistical model of images, and since they

assume an MSE error measure. We have found that images compressed with

a 9-tap subband transform are perceptually superior to the 32-point DCT,

primarily because of the absence of the block artifacts. We also �nd that the

9-tap QMF is preferable to the 13-tap QMF: the 9-tap �lter produces more

aliasing, but the Gibbs ringing is more noticeable with the 13-tap �lter. We

have not performed any coding experiments using the LOT, and so cannot

comment on its performance.

�lter GPCM

QMF-5 8.07

QMF-9 9.05

QMF-13 9.28

fast-LOT-16 9.32

DCT-16 8.82

DCT-32 9.49

Table 4.5: Theoretical coding gains over PCM for four-level QMF pyra-

mids, the fast LOT (with N = 16 and L = 32), and the block DCT. Values

were computed assuming �rst-order Gauss-Markov signal statistics with

� = 0:95, on a a one-dimensional image of size 256.
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