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Abstract

Standard approaches to motion analysis assume

that the optic ow is smooth; such techniques have

trouble dealing with occlusion boundaries. The most

popular solution is to allow discontinuities in the ow

�eld, imposing the smoothness constraint in a piece-

wise fashion. But there is a sense in which the dis-

continuities in ow are artifactual, resulting from the

attempt to capture the motion of multiple overlapping

objects in a single ow �eld. Instead we can decom-

pose the image sequence into a set of overlapping lay-

ers, where each layer's motion is described by a smooth

ow �eld. The discontinuities in the description are

then attributed to object opacities rather than to the

ow itself, mirroring the structure of the scene. We

have devised a set of techniques for segmenting im-

ages into coherently moving regions using a�ne mo-

tion analysis and clustering techniques. We are able

to decompose an image into a set of layers along with

information about occlusion and depth ordering. We

have applied the techniques to the \ower garden" se-

quence. We can analyze the scene into four layers,

and then represent the entire 30-frame sequence with

a single image of each layer, along with associated mo-

tion parameters.

1 Introduction

Occlusions represent one of the di�cult problems

in motion analysis. Smoothing is necessary in order

to derive reliable ow �elds, but when smoothing oc-

curs across boundaries the result is a ow �eld that

is simply incorrect. Various techniques have been de-

vised to allow for motion discontinuities but none are

entirely satisfactory. In addition, transparency due to

various sources (including motion blur) can make it

meaningless to assign a single motion vector to a sin-

gle point. It is helpful to reconsider this problem from

a di�erent point of view.

Consider an image that is formed by one opaque

object moving in front of a background. In Figure

1, this is illustrated with a moving hand in front of

a stationary checkerboard. The �rst row shows the

objects that compose the scene; the second row shows

the image sequence that will result. An animation

system { whether traditional cel animation or modern

digital compositing { can generate this sequence by

starting with an image of the background, an image

of the hand, an opacity map (known as a \matte" or

an \alpha channel") for the hand, motion �elds for

the hand and the background, and �nally the rules of

image formation.

The resulting image sequence will pose challenges

for standard motion analysis because of the occlusion

boundaries. But in principle we should be able to re-

trieve the same simple description of the sequence that

the animator used in generating it: an opaque hand

moving smoothly in front of a background. The de-

sired description for the hand is shown in the third row

of Figure 1; it involves an intensity map, an opacity

map, and a warp map. The background (not shown)

would also be extracted. Having accomplished this

decomposition we could transmit the information very

e�ciently and could then resynthesize the original se-

quence, as shown in the bottom row. In addition, the

description could be an important step on the way

to a meaningful object-based description of the scene,

rather than a mere description of a ow �eld.

Adelson [1] has described a general framework for

\layered image representation," in which image se-

quences are decomposed into a set of layers ordered

in depth along with associated maps de�ning their

motions, opacities, and intensities. Given such a de-

scription, it is straightforward to synthesize the image

sequence using standard techniques of warping and

compositing. The challenge is to achieve the descrip-

tion starting with an image sequence from a natural

scene. In other words: rendering is easy, but vision
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Figure 1: This �gures show the decomposition of an im-

age sequence consisting of a hand moving in front of a

checkerboard background. The conventional method of

representing motion is by a dense motion �eld with motion

discontinuities at object boundary. The layered represen-

tation describes these objects with smooth motions, and

discontinuities in opacity. The apparent motion disconti-

nuities result when the layers are composited according to

the occlusion relationship between objects.

is di�cult, as usual. In this paper we describe some

techniques that are helpful in accomplishing the vision

side of the procedure.

2 Image analysis

Analysis of the scene into the layered representation

requires grouping the points in the image into multiple

regions where each region undergoes a smooth motion.

However, multiple motion estimation and segmenta-

tion is a di�cult problem that involves a simultaneous

estimation of the object boundary and motion. With-

out the knowledge of the object boundaries, motion

estimation will incorrectly apply the image constraints

across multiple objects. Likewise, object boundaries

are di�cult to determine without some estimation of

motion.

Recent works by [7, 2, 9] have shown that the a�ne

motion model provides a good approximation of 3-D

moving objects. Since the motion model used in the

analysis will determine the descriptiveness the rep-

resentation, we use the a�ne motion model in our

layered representation to describe a wide range of

motions commonly encountered in image sequences.

These motions include translation, rotation, zoom,

and shear. A�ne motion is parameterized by six pa-

rameters as follows:

Vx(x; y) = ax0 + ax1 x+ ax2 y; (1)

Vy(x; y) = ay0 + ay1 x+ ay2 y (2)

where at each point (x; y), Vx(x; y) and Vy(x; y) are

the x and y components of velocity respectively, and

the ak's are the a�ne motion parameters.

3 Implementation

Typical methods in multiple a�ne motion estima-

tion use an iterative motion estimation techniques to

detect multiple a�ne motion regions in the scene. At

each iteration, these methods assume that a dominant

motion region can be detected and eliminated from

subsequent analysis. Estimation of these regions in-

volve global estimation using a single motion model,

and thus, often result in accumulating data from mul-

tiple objects.

Our implementation of multiple motion estimation

is similar to robust techniques presented by [3, 4, 5].

We use a gradual migration from a local motion rep-

resentation to a global object motion representation.

By performing optic ow estimation follow by a�ne

estimation instead of a direct global a�ne motion es-

timation, we can minimize the problems of multiple

objects within our analysis region. The layer's image,

opacity map are obtained by integrating the motion

and regions over time. Our analysis of an image se-

quence into layers consists of three stages: 1) local mo-

tion estimation; 2) motion-based segmentation and; 3)

object image recovery.

3.1 Motion segmentation

Our motion segmentation algorithm is illustrated

in Figure 2. The segmentation algorithm is is divided

into two primary steps: 1) local motion estimation

and, 2) a�ne motion segmentation. Multiple a�ne

motions are estimated within subregions of the image

and coherent motion regions are determined based on

the estimated a�ne models. By iteratively updating

the a�ne models and the regions, this architecture
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Figure 2: This �gures shows the technique used in mo-

tion segmentation. A�ne motion models are determined

by regression on the dense motion �elds and the regions

are assigned to minimizes the error between the motion

expected by the models and the estimated dense motion.

minimizes the problem of intergrating data across ob-

ject boundaries.

Our local motion estimation is obtained with a

multi-scale coarse-to-�ne algorithm based on a gradi-

ent approach described by [8]. Since only one motion is

visible at any point when dealing with opaque objects,

the single motionmodel assumed in the optic ow esti-

mation is acceptable. The multi-scale implementation

allows for estimation of large motions. When analyz-

ing scene exhibiting transparent phenomena, the mo-

tion estimation technique described by Shizawa and

Mase [10] may be suitable.

Motion segmentation is obtained by iteratively re-

�ning the estimates of a�ne motions and the corre-

sponding regions. We estimate the a�ne parameters

within each subregion of the image by standard re-

gression techniques on local motion �eld. This esti-

mation can be seen as a plane �tting algorithm in

the velocity space since the a�ne model is a linear

model of local motion. The regression is applied sep-

arately on each velocity component since the compo-

nents are independent. If we let Hi = [Hyi Hxi
]

be the ith hypothesis vector in the a�ne parameter

space with components Hxi

T = [ax0i ax1i ax2i] and

Hyi
T = [ay0i ay1i ay2i] corresponding to the x and

y components , and �T = [1 x y] be the regressor,

then the a�ne equations 1 and 2 become:

Vx(x; y) = �THxi
(3)

Vy(x; y) = �THyi (4)

and a linear least squares estimate of Hi for an given

local motion �eld is as follows:

[Hyi Hxi
] = [
X
Pi

� �T ]�1
X
Pi

(�[Vy(x; y) Vx(x; y)])

(5)

The summation is taken over Pi corresponding to the

ith subregion in the image.

We avoid estimating motion across object bound-

aries by initially using small arbitrary subregions

within the image to obtain a set of hypotheses of likely

a�ne motions exhibited in the image. Many of these

hypotheses will be incorrect because these initial sub-

regions may contain object boundaries. We identify

these hypotheses by their large residual error and elim-

inate them from our analysis.

However, motion estimates from patches that cover

the same object will have similar parameters. These

are grouped in the a�ne motion parameter space

with a k-means clustering algorithm described in [11].

In the clustering process, we derive a representative

model for each group of similar models. The model

clustering produces a set of likely a�ne motion mod-

els that are exhibited by objects in the scene.

Next, we use hypothesis testing with the motion

models to reassign the regions. We use a simple cost

function, C(i(x; y)), that minimizes the velocity errors

between the local motion estimates and the expected

motion described by the a�ne models. This cost func-

tion is summarized as follows:

C(i(x; y)) =
X
x;y

(V(x; y)�VHi
(x; y))2 (6)

where i(x; y) is the indicates the model that location

(x; y) is assigned to, V(x; y) is the estimated local mo-

tion �eld, and VHi
(x; y) is the a�ne motion �eld cor-

responding to the ith hypothesis. Since each location

is assigned to only one of the hypotheses, we obtain

the minimumtotal cost by minimizing the cost at each

location. We summarize the assignment in the follow-

ing equations:

i0(x; y) = arg min[V(x; y)�VHi
(x; y)]2 (7)

where i0(x; y) is the minimum costs assignment. Re-

gions that are not easily described by any of the mod-

els are unassigned. These regions usually occur at ob-

ject boundaries because the assumptions used by the
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optic ow estimation are violated. We assign these

regions by warping the images according to the a�ne

motionmodels and selecting the model that minimizes

the error in intensity between the pair of images.

We now de�ne the binary region masks that de-

scribe the support regions for each of the a�ne hy-

potheses as:

Pi(x; y) =

�
1 if i0(x; y) = i

0 otherwise
(8)

These region masks allow us to identify the object re-

gions and to re�ne our a�ne motion estimates in the

subsequent iterations according to Equations 5.

As we perform more iterations, we obtain more ac-

curate motion segmentation because the a�ne motion

estimation is performed within single motion regions.

Convergence is obtained when only a few points are re-

assigned or when the number of iterations reaches the

maximum allowed. Models that have small support

regions are eliminated because their a�ne parameters

will be inaccurate in these small regions.

We maintain the temporal coherence and stability

of the segmentation by using the current motion seg-

mentation results as initial conditions for segmenta-

tion on the next pair of frames. Since an object's shape

and motion change slowly from frame to frame, the

segmentation results between consecutive frames are

similar and require fewer iterations for convergence.

When the motion segmentation on the entire sequence

is completed, each object will have a region mask and

an a�ne motion description for each frame of the se-

quence.

3.2 Analysis of layers

The images of the corresponding regions in the dif-

ferent frames di�er only by an a�ne transformation.

By applying these transformations to all the frames,

we align the corresponding regions in the di�erent

frames. When the motion parameters are accurately

estimated, objects will appear stationary in the mo-

tion compensated sequence. The layer images and

opacity map are derived from these motion compen-

sated sequences.

However, some of the images in the compensated

sequence may not contain a complete image of the ob-

ject because of occlusions. Additionally, an imagemay

have small intensity variations due to di�erent lighting

conditions. In order to recover the complete represen-

tative image and boundary of the object, we collect

the data available at each point in the layer and apply

a median operation on the data. This operation can be

easily seen as a temporal median �ltering operation on

the motion compensated sequence in regions de�ned

by the region masks. Earlier studies have shown that

motion compensation median �lter can enhance noisy

images and preserve edge information better than a

temporal averaging �lter [6].

Finally, we determine occlusion relationship. For

each location of each layer, we tabulate the number

of corresponding points used in the median �ltering

operation. These images are warped to their respec-

tive positions in the original sequence according to the

estimated a�ne motions and the values are compared

at each location. An layer that is derived from more

points occludes an image that is derived from fewer

points, since an occluded region necessarily has fewer

corresponding points in the recovery stage. Thus the

statistics from the motion segmentation and temporal

median �ltering provide the necessary description of

the object motion, texture pattern, opacity, and oc-

clusion relationship.

Our modular approach also allows us to easily in-

corporate other motion estimation and segmentation

algorithm into a single robust framework.

4 Experimental results

We implemented the image analysis technique on

a SUN workstation and use the �rst 30 frames of the

MPEG \ower garden" sequence to illustrate the anal-

ysis, the representation, and synthesis. Three frames

of the sequence, frames 0, 15 and 30, are shown in Fig-

ure 3. In this sequence, the tree, ower bed, and row

of houses move towards the left but at di�erent veloc-

ities. Regions of the ower bed closer to the camera

move faster than the regions near the row of houses in

the distance.

Optic ow obtained with a multi-scale coarse-to-

�ne gradient method on a pair of frames is shown on

the left in Figure 4. The initial regions used for the

segmentation consisted of 215 square regions. Notice

the poor motion estimates along the occlusion bound-

aries of the tree as shown by the di�erent lengths of

the arrows and the arrows pointing upwards. In the

same �gure, results of the a�ne motion segmentation

is shown on the middle. The a�ne motion regions are

depicted by di�erent gray levels and darkest regions

along the edges of the tree in the middle �gure cor-

respond to regions where the local motion could not

be accurately described by any of the a�ne models.

Region assignment based on warping the images and

minimizing intensity error reassigns these regions and

is shown on the right.
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Our analysis decomposed the image into 4 primary

regions: tree, house, ower-bed and sky. A�ne pa-

rameters and the support regions were obtained for the

entire sequence, and the layer images for the four ob-

jects obtained by motion compensated temporal me-

dian �ltering are shown in Figure 5. We use Frame 15

as the reference frame for the image alignment. The

occluding tree has been removed and occluded regions

recovered in the ower-bed layer and the house layer.

The sky layer is not shown. Regions with no texture,

such as the sky, cannot be readily assigned to a layer

since they contain no motion information. We assign

these regions to a single layer that describes stationary

textureless objects.

We can recreate the entire image sequence from the

layer images of Figure 5, along with the occlusion in-

formation, the a�ne parameters that describe the ob-

ject motion, and the stationary layer. Figure 6 shows

three synthesized images corresponding to the three

images in Figure 3. The objects are placed in their

respective positions and occlusion of background by

the tree is correctly described by the layers. Figure 7

shows the corresponding frames synthesized without

the tree layer. Uncovered regions are correctly recov-

ered because our layered representation maintains a

description of motion in these regions.

5 Conclusions

We employ a layered image motion representation

that provides an accurate description of motion dis-

continuities and motion occlusion. Each occluding and

occluded object is explicitly represented by a layer

that describes the object's motion, texture pattern,

shape, and opacity. In this representation, we describe

motion discontinuities as discontinuities in object sur-

face opacity rather than discontinuities in the actual

object motion.

To achieve the layered description, we use a robust

motion segmentation algorithm that produces stable

image segmentation and accurate a�ne motion esti-

mation over time. We deal with the many problems

in motion segmentation by appropriately applying the

image constraints at each step of our algorithm. We

initially estimate the local motion within the image,

then iteratively re�ne the estimates of object's shape

and motion. A set of likely a�ne motion models ex-

hibited by objects in the scene are calculated from the

local motion data and used in a hypothesis testing

framework to determine the coherent motion regions.

Finally, the temporal coherence of object shape and

texture pattern allows us to produce a description of

the object image, boundary and occlusion relation-

ship. Our approach provides useful tools in image un-

derstanding and object tracking, and has potentials as

an e�cient model for image sequence coding.
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Figure 3: Frames 0, 15 and 30, of MPEG ower garden sequence.

 

 

Figure 4: A�ne motion segmentation of optic ow.

   Figure 5: Images of the ower bed, houses, and tree. A�ne motion �elds are also shown here.

   
Figure 6: Corresponding frames of Figure 3 synthesized from layer images in Figure 5.

   
Figure 7: Corresponding frames of Figure 3 synthesized without the tree layer.
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