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ABSTRACT

Most image coding systems rely on signal processing concepts such as transforms, VQ, and motion compensation. In
order to achieve significantly lower bit rates, it will be necessary to devise encoding schemes that involve mid-level and
high-level computer vision. Model-based systems have been described, but these are usually restricted to some special class
of images such as head-and-shoulders sequences. We propose to use mid-level vision concepts to achieve a decomposition
that can be applied to a wider domain of image material. In particular, we describe a coding scheme based on a set of
overlapping layers. The layers, which are ordered in depth and move over one another, are composited in a manner similar to
traditional “cel” animation. The decomposition (the vision problem) is challenging, but we have attained promising results
on simple sequences. Once the decomposition has been achieved, the synthesis is straightforward.

1 INTRODUCTION

Vision systems and image coding systems face similar problems: how to represent images in ways that are efficient
and useful. Current image coding systems use representations such as DCT’s and pyramids, which are similar to those
used in low-level vision systems. Someday we may have image coders that utilize high-level vision, including 3-D object
recognition, but today this is impossible except for very restricted domains. A third approach is to develop an image coding
systems based on “mid-level” vision, utilizing such concepts as global motion, grouping, surfaces, and regions. These
concepts are sophisticated enough to produce powerful representations, and yet are simple enough to be computed. We
have investigated a representation based on a set overlapping layers, where each layer contains information about color,
intensity, transparency, and motion. The layered representation captures much of the visual coherence of the sequence, and
it may allow for better data compression than standard techniques. The approach may be categorized with object-based
methods.10,13 Earlier descriptions of layered video coding were presented by Adelson and Wang .1,19,20

In the compositing methods of computer graphics, or in the production techniques used by traditional "cel" animators,
the image representation includes the concept of 2-D images that are placed over one another as layers. Each layer occludes
the one beneath it according to its transparency or opacity at each point. At the same time, each layer adds its own color
and intensity. The final image is the composition of all the operations of attenuation and addition. In computer graphics the
attenuation is represented by the "alpha" channel.

Figure 1 illustrates the concept with a hypothetical image sequence of a car moving against a background. A traffic light
in the foreground occludes the car. This sequence can be decomposed into three layers shown in figure 2. These layers are:
the traffic light in the foreground; the car in the mid-ground; and the building and tree in the background. Given the layers,
a single frame of the sequence is generated by overlaying the layers and compositing according to their alpha maps. For
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simple occlusions, the alpha map takes on a value of 1 where the layer occludes the layers below it and 0 where the layers
below are visible. When the alpha map takes on intermediate values, we can describe phenomena such as transparency and
motion blur. Figure 3 illustrates how an image can be synthesized from the layers. A sequence of images is generated by
applying the motion map to the intensity and alpha maps before compositing.

We propose a video coding system, shown in figure 4, whereby video is decomposed into the layered representation. A
layer encoding module compresses the layer maps before transmission or storage. The compressed data is easily converted
back into the layered representation for generating the original images or for creating a set of new images by video editing.
We present an implementation of a layer analysis system based on affine motion segmentation and discuss compression of
layer maps for coding applications. Video compression, background recovery, and video special effects are demonstrated
by examples.

2 LAYER ANALYSIS

In block-based coding techniques, an image is divided into an arbitrary array of blocks and within each block a simple
translational motion is estimated. Data compression is achieved by representing motion data by a blockwise description,
resulting in transmission of only a small amount of motion data. Given the motion data, an image can be constructed from
the available data in previous frames. However, this image model cannot accurately describe the scene. Objects do not
usually fall within these block and motion coherence usually extends beyond these blocks. Systems that combine blocks
with similar motion have demonstrated improvements in video compression.11,14

In our layer analysis, we perform motion segmentation on the image to determine the coherent motion regions. In
contrast, segmentation in the block-based techniques is implicit by nature of the block processing. We also extend the
simple translation model to an affine motion model to support more complex motions including: translation, rotation, zoom,
and shear. The affine model is attractive for layer analysis because it is defined by only six parameters and the affine motion
regions roughly correspond to moving 3-D planar surfaces. This model is described as follows:

Vx(x; y) = ax0 + axxx+ axyy (1)

Vy(x; y) = ay0 + ayxx+ ayyy (2)

where V x and V y are the x and y components of velocity, and the a0s are the parameters of the transformation. From the
standpoint of motion data compression, affine motion segmentation represents the motion field with piecewise linear motion
regions whereas block-based techniques represents motion with piecewise constant regions that are pre-defined. A number
of authors have described methods for achieving piecewise affine decompositions.3,6,9

In addition to reducing data in the spatial dimensions, layer analysis also reduces video data in the temporal dimension.
We assume the intensity profile of moving surfaces remains constant over time and the images in different frames of the
sequence are simply “warped” by an affine transformation. By tracking these surfaces over time, we can identify the
corresponding points for each regions to derive a single intensity map describing these surfaces.

The difficult task in layer analysis is segmentation, in particular, determining the coherent motion regions. Our seg-
mentation framework consists of: local motion estimation; motion model generation; and region classification. Additional
constraints on region size and connectivity are introduced in an iterative framework to improve stability and robustness.
Our implementation of the segmentation algorithm is outlined in figure 5.

In this algorithm, motion segmentation is obtained by classifying each image location based on a set of affine motion
models. We hypothesize these models by sampling the dense motion field, which is estimated by the optic flow estimator.
The analysis begins at the region generator. Initially, the region generator segments the image into an array of square regions.
Subsequently, the region generator creates new regions from unassigned regions. The model estimator calculates the affine
parameters associated with each of the regions. Model merger combines multiple models having similar parameters to
produce a single model. Region classifier assigns each pixel to the model that best describes its motion. Iteratively motion
models are refined by estimating models within coherent motion regions. Constraints on region size and connectivity are
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Figure 1: Three frames of a hypothetical scene.

(a) (b) (c)

Figure 2: The layers involved in the hypothetical scene. Each layer consists of: an intensity map, an alpha map, and motion
map. The scene is can be decomposed into: (a) a foreground traffic light layer; (b) A mid-ground moving car layer; and (c)
a the background building and tree layer.

Figure 3: Three layers are composited according to their alpha map and their depth ordering to form a single image of the
hypothetical sequence. Other frames of the sequence are generated by applying the motion transforms to each layer and
compositing.
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Figure 4: In concept in layer coding is illustrated in this diagram. The video data is decomposed into the layered
representation by the video analyizer. The layers are compressed by the layer encoder before transmission or storage to
further reduce bit rate.
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Figure 5: This figures shows the block diagram of the motion segmentation algorithm. Segmentation of the motion data is
obtained by iteratively refining a set of motion hypotheses and classifying pixels based on this set.

enforced by the region splitter and region filter to provide added stability.

After the first iteration, the algorithm produces a set of coherent motion regions. By re-estimating the affine parameters
within the new regions, we obtain better model estimates. At each iteration, the assignment improves because the models
are estimated within coherent motion regions. Convergence is obtained when only a few points are reassigned or when the
number of iterations reaches the maximum allowed. This is typically less than 20 iterations.

2.1 Optic flow estimation

Our local motion estimate is obtained with a multi-scale coarse-to-fine algorithm based on a gradient approach described
by other authors.2,12,15 The optic flow map describes the motion at each pixel location. The gradient approach uses the
image intensity profile to determine the most likely displacement in a given analysis window. Like with block-matching,
the underlying criterion for image motion is to find a displacement of an image region such that the sum of square difference
(SSD) with that of the corresponding image is minimized:

min
Vx; Vy

SSD = min
Vx; Vy

X
[It(x� Vx(x; y); y � Vy(x; y))� It+1(x; y)]

2 (3)

where It and It+1 are the images at time t and t+1, respectively. Unlike in block-matching algorithm, which requires costly
search for image displacement, in the gradient approach image displacement is obtained by linear estimation techniques. A
linear least-squares solution for motion is obtained by first linearizing the right side of equation 3, then minimizing with
respect to Vx(x; y) and Vy(x; y). � P
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where, Ix, Iy, and It are functions of x, y, and t, and correspond to the partial derivatives of the image intensity with
respect to x, y, and t, respectively. Non-integral displacement estimates are obtained for every image location (x; y). The
summation is taken over a small region around the point (x; y). We use a multi-scale implementation to allow for estimation
of large motions while maintaining low computational requirements.

2.2 Motion segmentation

The model estimator calculates affine parameter values for each region by applying standard linear regression on the
motion data. This estimation is applied separately on each velocity component because the x affine parameters depend
only on the x component of velocity and the y parameters depend only on the y component of velocity. If we let
a
T
i = [ax0i axxi axyi ay0i ayxi ayyi] be the ith hypothesis vector in the 6 dimensional affine parameter space with
axi

T = [ax0i axxi axyi] and ayi
T = [ay0i ayxi ayyi] corresponding to the x and y components , and �T = [1 x y] be
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the regressor, then the motion fields equations 1 and 2 can be simply written as:

Vx(x; y) = �Taxi
(5)

Vy(x; y) = �Tayi (6)

A linear least squares estimate of ai of the motion field is obtained as follows:

[ayi axi
] = [

X
Ri

� �T ]�1
X
Ri

(�[Vy(x; y) Vx(x; y)]) (7)

The summation is taken over Ri the ith motion region. Initially, model estimation is performed over an array of square
regions generated by the region generator.

Next, the model merger finds similar models and produces a single representative model for each similar group, thus
regions undergoing similar motion are assigned to the same motion model. The model merging process is carried out in the
parameter space with a k-means clustering algorithm.18 In k-means clustering, each model is treated as vector in parameter
space. Initially a set of centers are chosen. Then each model vector is assigned to the nearest center forming clusters. A
mean vector is calculated for each cluster and used as the new center. Model clustering allows us to describe multiple model
with a few representative ones.

The region classifier identifies the coherent motion regions by assigning each pixel location to one of the given motion
models. A motion map for each affine model is created, and each location assigned to the model that best describes
the motion at that location. Even though motion models are initially estimated within blocks, pixel level resolution on
segmentation is obtained by model testing at each image location. In the classification, we minimize the following cost
function,C(i(x; y)):

min
i

C(i(x; y)) = min (V(x; y) �Vai
(x; y))2 (8)

where i(x; y) indicates the model that location (x; y) is assigned to,V(x; y) is the estimated local motion field, andVai
(x; y)

is the affine motion field corresponding to the ith affine motion hypothesis.

2.3 Temporal data reduction

The layer analysis maintains temporal coherence and stability of the segmentation by using the current motion segmen-
tation results as the initial segmentation map for the next pair of frames. Since an object’s shape and motion change slowly
from frame to frame, segmentation of consecutive frames will be similar resulting in fewer iterations for convergence.
Typically, processing on the subsequent frames requires only two iterations for stability, and the parameter clustering step
becomes trivial. Thus, most of the computational complexity is in the initial segmentation, which is required only once per
sequence. When the motion segmentation on the entire sequence is completed, each affine motion region will be identified
along with its affine motion parameters.

After calculating the affine motions and identifying the regions for the entire sequence, an intensity map is produced
for each coherent motion region. For each pixel in the intensity map, corresponding intensity values for each frame in the
sequence are collected and the median value is obtained for the intensity map. In this processing, the video data is temporally
reduce into a few intensity maps. In addition to data compression, earlier studies have shown that motion compensated
median filtering can enhance noisy images8 and temporal accumulation of data can produce higher resolution images.9

The reliability of intensity map can be obtained by calculating the variance in the median operation or by simply using
the number of points in the operation as an indicator. Furthermore, we assume a simple occlusion model so that alpha maps
simply take on a value of 1 in regions where intensity values are reliable and 0 where they are not.

Finally, we determine occlusion relationships. For each layer, we generate a map corresponding to the number of points
available for constructing the layer intensity map. A point in intensity map generated from more data is visible in more
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frames and its derived intensity in the layer representation is more reliable. By verification of intensities and of the reliability
maps, the layers are assigned a depth ordering. A layer that is derived from more points occludes an image that is derived
from fewer points.

3 LAYER ENCODING

Video compression is achieved when the video data is decomposed into the layered representation. However, further
data compression can be obtained by efficiently encoding the layer maps, shown in figure 2, in particular, the intensity map
and the alpha map. The motion map requires no additional encoding because each map is described by only six numbers
per layer per frame.

We use standard still image coding techniques, for example JPEG,16 for layer encoding. The JPEG algorithm uses
discrete cosine transform17 (DCT) on 8 x 8 blocks to achieve good energy compaction. The DCT has an orthogonal basis,
which is composed of cosines of different frequencies. Usually a few DCT coefficients contain most of the input energy.
Therefore high image compression can be achieved by retaining only these coefficients.

A simple approach to compressing the layer maps with JPEG is to derive a single alpha-intensity image obtained by
simply setting all unsupported regions to a known constant value, for instance zero. However, the boundary between the
supported and unsupported regions creates artificial discontinuities in intensity. The presence of these intensity edges in
the alpha-intensity image causes the JPEG algorithm to perform poorly because these edges result in energy spread in
the frequency domain, thus considerably reducing the DCT energy compaction. We have developed a better method that
separately compresses the intensity and alpha maps.

3.1 Intensity map encoding

In our encoding algorithm, we first classify all possible 8 x 8 blocks of an intensity map into three categories: interior
blocks, in which all pixels are supported; edge blocks, in which a fraction of pixels are supported; and exterior blocks, in
which no pixels are supported. Figure 6(a) shows these blocks for a typical intensity map.

The JPEG algorithm can be directly used for the interior blocks because these blocks do not have artificial intensity
edges. Since the exterior blocks contain no information about the layer, they can be coded with minimal bit rate. For better
compression, the edge blocks require a special encoding algorithm.

Consider an edge block shown in figure 6(b) where unsupported pixels are shown in white. In our algorithm, we reduce
the edges by filling the unsupported locations with values that result in a smooth transition from the supported regions. Each
unsupported pixel is recursively assigned the average intensity of its neighboring pixels. The result of this filling algorithm is
shown in figure 6(c). When edge blocks are modified by smoothly filling the unsupported regions, the distortion introduced
by JPEG quantization is reduced as compared with filling these regions with arbitrary values. In the JPEG algorithm, high
frequencies are quantized more coarsely than low frequencies, therefore introducing low frequency energy by smooth filling
results in less distortion. This reduction in distortion is most noticeable when compressing these blocks at low JPEG quality
factors.

3.2 Alpha map encoding

Figure 7(a) shows an alpha map. The alpha map is completely represented by its boundary contour, see figure 7(b), hence
our alpha map encoding algorithm is simply a contour encoding algorithm. In this figure we show a single contour, however,
more complex layers may have multiple contours. We use a chain coding algorithm to encode a contour. In this algorithm
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exterior block interior block edge block

(a) (b) (c)

Figure 6: (a)The exterior, interior, and edge blocks of an intensity map; (b) an edge block; (c) the modified edge block.

(a) (b)

Figure 7: (a) An alpha map; (b) a contour description of the alpha map.
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Figure 8: This figure outlines the block diagram of the layer encoder. The intensity map is encoded by first modifying the
edge blocks and then performing JPEG compression on the modified map. The alpha map is encoded by first extracting its
contour and then applying the contour encoding algorithm.
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Figure 9: The decoder block diagram is shown here.
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a contour is represented by an initial point and a sequence of directionals indicating the position of the next point on the
contour. There are only 8 distinct direction vectors, one corresponding to each of the nearest neighbors, thus requiring only
3 bits per directional. However, the chain codes can be further compressed if there are long runs of a particular directional
vector. We used the Lempel-Ziv compression algorithm5 on the chain codes to produce a very compact description of the
alpha map.

The complete encoding and decoding processes are outlined in figure 8 and figure 9, respectively. Standard JPEG
decompression algorithm is used to decode the compressed intensity map. Using a simple contour decoding algorithm, the
transmitted chain codes are decoded to obtain contours of the alpha map. The contours are then filled to get the required
alpha map.

More complex algorithms, such as region-oriented transform coding,4,7 can be used to obtain better compression.
However, we are able to achieve good results with our faster algorithm.

4 EXPERIMENTAL RESULTS

We have implemented the image analysis technique in C on a Hewlett Packard 9000 series 700 workstation. We illustrate
the analysis, the representation, and the synthesis with the first 30 frames of the MPEG flower garden sequence, of which
frames 1, 15, and 30 are shown in figure 10. Dimensions of the image are 720 x 480. In this sequence, the tree, flower bed,
and row of houses move towards the left but at different velocities. Regions of the flower bed closer to the camera move
faster than the regions near the row of houses, which is in the distance.

4.1 layer analysis results

Optic flow obtained with a multi-scale coarse-to-fine gradient method on a pair of frames is shown in figure 11(a). The
initial segmentation map for the first frame is shown in figure 11(b). The block dimensions are 20 x 20 pixels and the
minimum allowable size of regions is 400 pixels. Maximum velocity error tolerated between the optic flow and the affine
motion model in the region classifier is 1 pixel/frame. Segmentation converges after 12 iterations resulting in 5 coherent
motion regions as shown in figure 11(c). Each affine motion region is depicted by a different gray level. The darkest regions
along the edges of the tree correspond to regions where the motion could not be easily described by affine models.

The layered representation for this sequence is shown in figure 12. We used Frame 15 as the reference frame for the
intensity map extraction. With the motion segmentation, we are able to remove the tree from the flower bed and house
layers and recover the occluded regions. The sky layer is not shown. Regions with no texture, such as the sky, cannot be
readily assigned to a layer since they contain no motion information. We assign these regions to a single layer that describes
stationary textureless objects.

We can recreate the entire image sequence from the intensity maps, alpha maps, and the affine motion parameters.
Figure 13[a] shows one frame of synthesized sequence from layers. The objects are ordered and placed in their respective
positions with the correct occlusions.

Currently, our motion analysis technique performs well when motion regions in the image can be easily described by
the affine motion model. Because our analysis is based on motion, regions must be sufficiently textured and large in size for
stability in segmentation and layer extraction. Therefore, scenes with few foreground objects undergoing affine motion are
suitable for our analysis. Sequences with complicated motions that are not easily described by the layered model require
special treatment.
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4.2 Compression results

Using our layer encoding algorithm, we encoded 30 frames of the flower sequence, 1 second of color video, at JPEG
quality factors of 80 and 45 with only 1.06 Mbits and 660 Kbits, respectively. Applying JPEG, with quality factors of 80
and 45, directly to the composite alpha-intensity images resulted in bit rates of 1.54 Mbits and 1.04 Mbits, respectively.
These numbers clearly indicate the improvement in compression obtained by our encoding algorithm. Other edge block
modification methods, that provide better compression with JPEG, are currently being studied.

The alpha maps, which are encoded losslessly, required only about 70 Kbits. If further reduction in the bit rate is desired,
the alpha map contours can be simplified by using morphological operators such as erosion and dilation. Motion parameters
for the sequence required 40 Kbits.

The average distortions, in terms of root mean squared error(RMSE), for our algorithm at quality factors of 80 and 45
were 2.865 and 3.77, respectively, whereas for the composite alpha-intensity encoding method the corresponding distortions
were 3.345 and 5.04, respectively. We use a simple RMSE distortion measure: RMSE = 1

N
f
P

[I(x; y) � Î(x; y)]2g
1
2 ;

where I denotes the original image with N pixels and Î denotes the reconstructed image.

It is evident from experimental results that our layer encoding algorithm not only gives improvement in compression,
but also provides higher quality.

5 OTHER APPLICATIONS

Video compression is achieved by the layered representation because the representation exploits the spatial and temporal
coherences in the data. Unlike block-based coders, video data is decomposed into meaningful object-like primitives
with interesting motions much like those used in computer graphics, thereby facilitating manipulation of video data. In
figure 13(b), we show an example of video editing. This image is generated by compositing all the layers of the flower
sequence except the ones corresponding to the tree. Block-based techniques cannot synthesize this image without the tree.
The occluded regions are correctly recovered because in layer analysis we build a description for these regions by collecting
data over many frames.

Our examples of the flower sequence also show that background and foreground recovery is easily accomplished by the
layer analysis. Note that an ordinary background memory could not achieve the effect shown in figure 13(b) because the
various regions of the scene are undergoing different motions.

The layered representation also provides frame rate flexibility. Once a sequence has been represented as layers, it is
straightforward to synthesize the images corresponding to any instant in time. Slow-motion and frame rate conversion can
be conveniently achieved by using the layered format. Likewise, our analysis can decompose sequences in raster interlaced
or progressively scanned formats into the layered representation, and subsequently, the video synthesizer can generate the
sequence in either format.

6 CONCLUSIONS

We present a layered image representation that utilizes mid-level vision concepts for compression of video data. These
concepts, which include motion estimation, image segmentation, and representation of coherent motion surfaces, exploit
the spatial and temporal coherences of moving images. In this representation, an image sequence is described by a set of
layers consisting of an intensity map, an alpha map, and motion information.

We describe an algorithm for layer analysis based on a robust motion segmentation framework. In this framework, we
iteratively determine the coherent motion regions from a dense motion field. A set of affine motion models are derived by
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sampling the motion field. Segmentation is obtained by assigning each location to an affine motion model. Coherent motion
regions are tracked across many frames and a single layer intensity map is derived for each region.

The layer analysis allows a sequence to be represented by a few layers resulting in compression of video data. We
propose a simple algorithm for encoding the layer maps. The algorithm separately encodes the intensity and alpha maps to
reduce both bit rate and distortion.

Because the layered representation is similar to representations utilized in computer graphics, layer analysis facilitates
the manipulation of video data such as background recovery, video editing and special effects, and frame rate conversion.
We present results of layer analysis on a real sequence.
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(a) Frame 1 (b) Frame 15

 

(c) Frame 30

Figure 10: Three frames of MPEG flower garden sequence.
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(a) motion field (b) motion segmentation

Figure 11: Results of dense motion field estimation on first pair of frames is shown in (a). Segmentation of the motion field
with affine motion models is shown in (b). Optic flow

Figure 12: This figure shows layered representation of the flower sequence. Three intensity maps corresponding to the tree,
flower bed, and house are shown here along with their depth ordering. Unsupported regions are shown here in black.

  

(a) (b)

Figure 13: (a) Frames 1 as reconstructed from the layered representation. (b) Frames 1 reconstructed from layers without
the tree.
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