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Abstract
Describing a video sequence in terms of a small

number of coherently moving segments is useful for
tasks ranging from video compression to event per-
ception. A promising approach is to view the motion
segmentation problem in a mixture estimation frame-
work. However, existing formulations generally use
only the motion data and thus fail to make use of static
cues when segmenting the sequence. Furthermore, the
number of models is either speci�ed in advance or es-
timated outside the mixture model framework. In this
work we address both of these issues. We show how to
add spatial constraints to the mixture formulations and
present a variant of the EM algorithm that makes use
of both the form and the motion constraints. More-
over this algorithm estimates the number of segments
given knowledge about the level of model failure ex-
pected in the sequence. The algorithm's performance

is illustrated on synthetic and real image sequences.1

1 Motivation
Signi�cant progress in scene analysis has been

achieved by systems that segment primarily based on
common motion (e.g. [14, 3]). Yet automatic segmen-
tation of arbitrary sequences remains di�cult for com-
puter vision systems. In this paper we argue that this
di�culty is partially a result of the exclusive reliance
on motion data which in many cases can be segmented
equally well by multiple interpretations. Let us con-
sider two such examples.

The �rst example is the two-bars sequence depicted
in �gure 1. Two intersecting bars are moving, one to
the left and one to the right.

Figure 1: The two-Bars sequence. Two intersecting bars

are moving, one to the left and one to the right.

1a shorter version of this paper appears in CVPR 96
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Figure 2: a. The desired description of the two-bars se-

quence. There are two motion groups with support maps

as shown. b. An incorrect description with two groups

which �ts the motion data equally well. c. An incorrect

description with four groups which �ts the motion data

equally well.

Following [3, 8, 7, 14, 1] we seek to describe the
scene in terms of a small number of coherent motion
groups. Figure 2a shows the desired description for
this sequence: two coherent motion groups, leftward
and rightward, with support maps as shown. However,
the instantaneous motion data can also be accommo-
dated by the interpretations shown in �gure 2b-c. The
interpretation depicted in �gure 2b describes the scene
using two coherent motion groups, upward and down-
ward, while the interpretation shown in �gure 2c uses
four coherent motion groups in the four principal di-
agonal directions.

Let us be more precise regarding what it means to
explain the motion data. One way to do this is to look
at the constraints imposed by the normal 
ow in ve-
locity space. This is shown in �gure 3. There are four
constraint lines, and their thickness corresponds to the
number of votes. Obviously, all three interpretations
satisfy the constraints equally well. In fact the motion
that satis�es the most constraints, i.e. the \dominant"
motion of this scene, is the incorrect upward one.

A second example of the ambiguity in segmentation
based on motion alone is the disc sequence shown in
�gure 4a. A textured disc is translating in front of a
stationary textured background.

In an ideal noiseless world, the optic 
ow measure-
ments derived for this sequence would be as shown in
�gure 4b. However, the 
ow shown in �gure 4c is more



Vx

Vy

Vx

Vy

a b

Figure 3: a. The normal constraint lines for the two-bars
sequence. The thickness of the line corresponds to num-

ber of votes. Note that all descriptions shown in �gure 2

satisfy the constraints equally well and that the dominant

motion of the scene is the spurious upwards one. b. the

corner constraints for the two-bars sequence. The spurious

upward motion is still supported.

a b c

Figure 4: a. The disc sequence. A textured disc is trans-

lating in front of a stationary background with identical

texture. b. Noise-free optic 
ow shown (x component of

motion indicated by gray level) c. Noisy optic 
ow (x

component only).

a.

b.

Figure 5: a. The correct segmentation of the disc scene.

Two coherent groups are shown with white pixels indicat-

ing membership in a group. b. An incorrect segmentation

with four groups that explains the motion data in �gure 4c

better than the two group description.

realistic: aliasing, re
ectance changes and measure-
ment noise will cause the measured 
ow to be noisy.
The correct description, consisting of two coherently
moving motion groups is shown on the top of �gure 5,
but the description shown on the bottom of �gure 5
consisting of four coherently moving groups actually
explains the motion data better. In fact a descrip-
tion where all pixels are moving independently would
explain the motion data best.

Why should the �rst description be favored? Part
of the answer lies in the fact that it explains the data
using fewer models. But obviously there exist scenes
where more than two models are needed. A second
reason to prefer the �rst description is that the result-
ing segmentation is spatially coherent, while in the sec-
ond one the segmentation is fragmented and we know
that such support maps are less likely to occur.

Thus these are the problems we want to address: we
want to use spatial coherence to constrain the possible
motion models and we want to automatically estimate
the number of models. As the sequences discussed
above show, these problems are closely related. In this
paper, we show that a new formulation of the standard
mixture model provides a natural uni�ed framework
in which to address both of these problems.

2 Mixture models and the EM algo-

rithm
Mixture estimation refers to the estimation of pa-

rameters given data that was generated by multiple
processes. As in all MLE techniques, the goal is to
estimate the parameters of the models (which we will
denote by �k) which maximize the likelihood of the
observed data (denoted by fO(r)gr. The Expectation-
Maximization (EM) algorithm [4] treats mixture esti-
mation as a special case of estimation with incomplete
data. The underlying model is that the complete data
includes not only O(r) (the \visible data"), but also
the \hidden data", labels L(r) specifying which pro-
cess generated the data (L(r) is a binary vector such
that Lk(r) = 1 i� process k generated the data at
r). The assumption is that if L(r) were known, the
estimation of �k would be simple.

The EM algorithm calls for replacing L(r) at each
iteration with its conditional expectation (this is the
expectation, or E step) based on the current parameter
estimates. We will denote the conditional expectation
of Lk(r) by gk(r). Although Lk(r) is binary valued,
gk(r) takes on continuous values between zero and one
and gk(r) sum to one for �xed r. The maximization,
or M step uses current values of gk(r) to maximize
likelihood of the parameters �k (since it treats L(r)
as known, this step is assumed to be simple), and the
algorithm is iterated until convergence. Dempster et
al. [4] have shown that each iteration is guaranteed to
increase the likelihood of the estimates of �k.

In the case of motion analysis �k would be a para-
metric description of the motion predicted by model
k and fO(r)g would be spatiotemporal measurements
made at location r. In this case gk(r) would be a kind
of \soft" segmentation of the image. Existing EM mo-
tion algorithms [8, 1] update gk(r) by calculating at



every pixel a deviation measure Dk(r) that measures
the residual between the observed measurements O(r)
and the predicted measurements assuming the motion
of model k. They can be characterized as assigning
each pixel to the model which minimizes the residual
(E step), and then updating model parameters based
on these assignments (M step). The \softness" of the
assignment gk(r) is determined by how peaked the as-
sumed distribution of Dk(r) is: if Dk(r) is assumed to
be narrowly concentrated around zero residual (e.g.
a Gaussian with small �) the conditional probability
gk(r) vanishes for all models except the one with small-
est residual and each pixel is e�ectively assigned to ex-
actly one process. If Dk(r) is assumed to be broadly
distributed around zero residual (e.g. a Gaussian with
large �) a pixel can be assigned to multiple processes.
In this case the assignments, gk(r) will be a set of
weights summing to one for every pixel.

2.1 Spatial constraints in mixture models

As noted above, existing EM algorithms [8, 1] for
motion segmentation assign pixels to models based on
local residual. In e�ect this assumes a type of indepen-
dence in the hidden variables L(r), namely that know-
ing the membership of a particular location yields no
information on the membership of all other locations
in the image. In image formation, this is rarely the
case: e.g. neighboring points with the same intensity
are likely to be from the same object. We have devel-
oped alternate E steps which assume spatial depen-
dence of L(r) and are useful for motion segmentation.

Segmented images. Suppose we can segment the im-
age based on static intensity cues into multiple frag-
ments of similar intensities. (cf. [2]) We still don't
know the correct motion segmentation of the image
(i.e. many of the fragments may be moving together)
but we can assume that if one pixel was generated by
a certain process, so were all other pixels in the same
fragment. It is easy to show that under this assump-
tion the E step reduces to assigning pixels to models
based on the summed deviation frommodel prediction
for all pixels in the same fragment. Again the assign-
ment can be soft or hard depending on the assumed
probability distribution of the deviations.

MRF prior on L. A weaker form of prior knowledge
on L is to assume a Markov Random Field (MRF) dis-
tribution, i.e. that nearby pixels are likely to belong
to the same model. As is well known from applying
MRF approaches to vision problems, an exact calcula-
tion of the probabilities of one variable in a MRF given
the others is computationally intensive (see e.g. [6]).
Since in the EM algorithm, this calculation must be
carried out at every iteration one can understand the
reluctance of some researchers to use this prior in a
segmentation algorithm. We have found that an in-
cremental algorithm based on the mean �eld approx-
imation (e.g. [16]) calculates gk results in reasonable
computation time and can be shown to converge to a
local maximumof an approximate likelihood function.

Our algorithm is based on some recent results which
relate the EM algorithm to statistical physics [9, 15].
The essence of this connection is that solving the mean
�eld equations for a MRF is equivalent to minimiz-

ing with respect to g the following \energy-entropy"
tradeo�:

J(g) =
X
k;r

gk(r)Dk(r)=�
2 �

X
k;r;s

wrsgk(r)gk(s)

+
X
k;r

gk(r) loggk(r) (1)

Where wrs are the expected strength of links between
location r and location s in the MRF formulation. In
theory, one could solve the MF equations by minimiz-
ing J using local gradient updates but in practice this
is computationally prohibitive. Neal and Hinton [9]
have shown that to guarantee convergence of the EM
algorithm it is not necessary to minimize this energy
but rather it is su�cient to choose a new estimate of
g such that the energy is decreased at every iteration.
Our E step calls for trying a reasonable guess for a
new estimate of g (obtained by blurring the residuals)
and accepting it only if the free energy is decreased.
If that estimate is rejected, we apply local gradient
updates to the old estimate of g. These local updates
are guaranteed to decrease the free energy and hence
our E step always decreases the free energy.

2.2 Estimating the number of models
One of the most di�cult problems in grouping is to

estimate the number of groups. Indeed it might seem
that this problem can not be addressed in a simple
maximum likelihood framework for mixture estima-
tion, due to the fact that one can always make the
data more likely by adding more models. However
this intuition breaks down if the distribution of the
residuals Dk(r) is assumed to be known. It has been
shown [11, 13] that if Dk(r) is assumed to be a Gaus-
sian with variance �2 then the local maximum of a K
component mixture likelihood is attained with num-
ber of distinct models that may be smaller than K,
and that this number depends on �.

This result makes intuitive sense. Note that � ex-
presses how well we expect our models to �t the data.
If we expect our description to �t the data perfectly
then we will need many models to explain the data.
However, if we expect the models to �t imperfectly
then fewer models are su�cient. To gain more intu-
ition, let us consider a simple example.

Suppose there are 10 pixels and we try to estimate
the parameters of 10 motion models. A trivial so-
lution is to have each model explain one data point
exactly. However, for � signi�cantly greater than zero
this is not a local maximum of the likelihood: while
every model makes its own datapoint in�nitely likely,
the other points are unlikely. Recall that the parame-
ter � controls the \softness" of the assignment. Thus
if we initialize the standard EM algorithm with this
trivial con�guration, the behavior will depend on �:
for in�nitely large � each data point will be equally
assigned among models and hence the algorithm will
converge to ten identical models or one unique model.
For � close to zero, each data point will be assigned to
exactly one model, and the algorithm will converge to
ten distinct models. In general the number of distinct



models increases as one decreases � [11, 13]. Note that
�nding the number of distinct models does not require
an additional clustering stage, as the algorithm con-
verges to a solution in which redundant models have
identical parameter estimates �k.

To summarize, two assumptions are needed to char-
acterize the statistical model of the scene. First, the
conditional probability of assigning a pixel to a model
given the assignment of its neighbors (this determines
wrs in equation 1). Second, the probability of ob-
serving a residual Dk(r) given that pixel r is indeed
moving with motion of model k (this determines �
in equation 1). Given these two assumptions, the EM
algorithm described here will automatically determine
the number of models and will segment the scene based
on the motion data and the prior static constraints.

3 Experimental results
An important choice in applying EM to motion seg-

mentation is to choose the deviation measure Dk(r),
i.e. a measure of how well a predicted velocity at a
pixel matches the image data. We chose to approxi-
mate this by a quadratic function, i.e. to assume the
distribution of the image data given a predicted ve-
locity is Gaussian in velocity space [12]. The true dis-
tribution is of course nonparametric and complicated
but we chose the Gaussian for two main reasons: it is
complicated enough to capture aperture e�ects and it
makes the M step closed form.

For small motions we used a modi�cation of the al-
gorithm described in [12] to derive the mean � and
covariance matrix ��1 of the deviation function in ve-
locity space. In this algorithm the covariance matrix
depends nonlinearly on the local image gradients. Our
modi�cation adds a further dependence on the local
residual after alignment, so that regions of accretion
and deletion near occlusion boundaries receive very
high uncertainty. To generalize this approach to large
motions, we �rst used a nonlinear multiscale optical

ow algorithm to align the two images (the optical

ow algorithm used is described in [14]). We took the
output of the optical 
ow as � and calculated ��1 by
using the method of [12] on the aligned images.

In all these simulations, the parameters � corre-
sponded to the six parameters of a�ne motion and
hence the M step involved solving a 6x6 system of
equations. To increase the stability of the M step, we
found it necessary to introduce a prior on � that favors
lower order velocity �elds.

3.1 The two-bars sequence
For the two-bars sequence we used the EM algo-

rithm described for segmented images. The segmenta-
tion used as input is shown in �gure 6a. It was derived
by linking together contiguous segments which strad-
dle the same two regions. Note that the segments on
the border between the long bar and the occluded bar
are not linked to those between the long bar and the
background. To link those would require some knowl-
edge about occlusion relationships, and we preferred
to let the motion data determine this. The results
are shown in �gure 6b-c. In �gure 6b we show the
segmentation and in �gure 6b we plot at each pixel

a b c

Figure 6: a. Static segmentation for the two-bars se-

quence used as input to the algorithm. The bars are frag-

mented into six segments b. The motion segmentation

computed by our algorithm. Two groups are found. c.

The motions. The algorithm correctly identi�es the num-

ber of models and their motions

Figure 7: The results of our algorithm on the disc se-

quence when MRF priors are used on the segmentation.

Both the number of models and their motions are esti-

mated correctly. Left: Segmentation, Right: estimated


ow.

the motion of the model to which it is most likely to
belong.

The algorithm correctly identi�es both the number
of models and the correct segmentation and motions.
These results were stable over multiple values of � and
also when independent Gaussian noise was added to
both images.

We also tried to segment this scene based solely on
the motion data using EM. The results strongly de-
pended on initial conditions and converged to some
description (with varying number of models) that sat-
is�ed the constraints. The chances of getting the cor-
rect description without spatial constraints was very
low since the dominant motion (i.e. the spurious up-
ward one in �gure 2b) was almost always chosen as
one of the motions.

3.2 The disc sequence
The optical 
ow estimated for the disc sequence is

shown in �gure 4a. We used the MRF prior on Lk

with a neighborhood consisting of a pixel and its four
nearest neighbors.

Figure 7 shows the description derived by our al-
gorithm. Again the �gure shows the at each location
the motion of the model to which it is most likely to
belong. Both the number of models and the correct
motions of the two models were estimated. For com-
parison, �gure 8 shows the description derived when
no priors on Lk are used. In this case the algorithm
\over�ts" and �nds four models even though it uses
the same assumption about the level of noise expected
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Figure 8: The results of the EM algorithm without MRF

priors on the disc sequence. The algorithm now over-

�ts and �nds four models. Left: Composite segmenta-

tion (each gray level corresponds to a di�erent model),

right:estimated 
ow.

a b

Figure 9: Segmentation achieved when a relatively large

amount of model failure is expected. The algorithm �nds

two segments corresponding to the tree and the rest of the

scene

in the description �. Thus both priors on expected
model failure and on spatial coherence in
uence the
number of models found with the EM algorithm.

As illustrated above, the algorithm with spatial
constraints is signi�cantly more stable with respect
to various choices of � than the EM algorithm assum-
ing independent Lk. However, for very large values of
� it will �nd just one motion model, while for very
small values it will also over�t. Indeed if we expect a
very large error in the model �tting, the \one model"
description is a reasonable one.

3.3 The MPEG garden sequence
The MPEG 
ower garden sequence was segmented

using a�ne motion in [14] and in [1]. The camera is
translating and di�erent areas of the scene move with
di�erent motions due to parallax. We used the same
optic 
ow used by Wang and Adelson [14] but rather
than �tting a�ne models to it, we use it as a center
of a Gaussian distribution in velocity space with an
estimated covariance.

Figures 9{11 show the calculated segmentations as
� is varied. These pictures were obtained by taking
a�ne parameters of the di�erent models estimated by
the EM algorithm, and calculating the most likely as-
signment of each pixel based on the alignment error
and the prior on the assignments (i.e. by iteratively
minimizing J in equation 1 until convergence.)

For large values of � the algorithm �nds just one
a�ne model. Figure 9 shows what happens as � is
lowered: two models are found, one corresponding to
the tree and another to the rest of the scene. The next

Figure 10: Segmentation achieved when � is lowered. The

algorithm �nds three segments - branches which are closer

to the camera than the rest of the tree are segmented from

it.

Figure 11: Segmentation achieved when � is lowered even

more. The algorithm �nds four segments { the 
ower bed

and the house are segregated.



segmentation is shown in �gure 10 the branches (which
are farther away from the camera) are segmented from
the tree and three models are chosen. As � is lowered
even more we obtain four models: the 
ower bed and
the house are segregated. In the next segmentation
(not shown) the 
ower bed is split into two parts (near
and far).

Note that in the three model case, a portion of the

ower bed is also segmented with the branches, since
they lie on the plane passing through the branches and
move with a consistent a�ne motion. This highlights
the shortcoming of the MRF priors we were using: al-
though highly fragmented segmentations are deemed
unlikely, a segmentation where a coherent chunk of
the bed moves with the branches is not su�ciently
penalized. We have also found that for this sequence
the motion models estimated by EM with MRF pri-
ors and with Lk(r) independent are not signi�cantly
di�erent (although the �nal segmentations are). In
current work we are extending the MRF priors in two
directions: (1) nonisotropic links e.g. nearby pixels of
similar colors have a stronger prior probability of be-
ing labeled identically and (2) hierarchical MRF priors
which do a better job of incorporating dependencies
of far away pixels.

4 Discussion
The use of static intensity constraints for motion

computations was also discussed by Black and Jepson
(1994) and by Etoh and Shirai (1994). In Black and
Jepson's work, the imagewas �rst segmented into mul-
tiple fragments of similar intensity by a non-isotropic
di�usion algorithm. A�ne 
ow was then estimated
separately for each fragment. Likewise in Etoh and
Shirai's work, the image was segmented into region
fragments by a procedure akin to clustering: each
fragment was associated with a spatial position, a 2D
translation and an intensity. The main di�erence be-
tween these approaches and ours is that we estimate
global motion models, and use the intensity segmenta-
tion to constrain the possible motion models. Thus in
the bars sequence, multiple fragments determined by
static cues are grouped together based on their con-
sistency with a common global motion.

Even approaches that segment primarily based on
motion, often use some sort of static coherence as-
sumptions to postprocess the segmentations [14, 10].
Although such an approach is probably su�cient for
the 
ower garden sequence, it seems hard to believe
that postprocessing any of the spurious segmentations
for the two-bars sequence (�gure 2) or the disc se-
quence(�gure 5) would yield the correct segmentation.
Thus in our approach the static coherence constraints
are used throughout the segmentation and model se-
lection processes.

A popular approach to estimating the number of
models is to use a \minimum description length" cri-
terion (e.g. [3, 1]). The main di�erence between our
approach and the MDL one, is that ours requires set-
ting of the expected level of model failure � rather
than de�ning the \coding length" or \stochastic com-
plexity" of the description. We �nd the � parameter to
be a more natural one to set. More importantly, by es-

timating the number of models within the EM frame-
work, only one set of statistical assumptions about the
scene need to be speci�ed. The same assumptions are
used in the E step and in the determination of num-
ber of models. Compare this with the approach of [1]
where in the E step the hidden variables are assumed
to be independent but in the model selection step an
optimization procedure is used to �nd non-fragmented
support maps.

Our approach is similar to that of Wang and Adel-
son [14] in that we �t models to optic 
ow rather than
directly to the image measurements, but di�ers in that
we also use covariances in the �t. More importantly,
our algorithm only computes a segmentation of two
frames, whereas the Wang and Adelson algorithm de-
rived a much more complicated description: a layered
representation of the whole scene.

5 Conclusion
As others have argued, motion segmentation can be

pro�tably considered in a mixture estimation frame-
work. In this work we have addressed two shortcom-
ings of previous mixture formulations. We have shown
how spatial constraints can be incorporated into the
framework by assuming a prior distribution on the hid-
den variables that models the dependence of one lo-
cation's assignment on that of its neighbors, and how
the number of models can be estimated automatically
given assumptions about the expected level of model
failure.

Our work is motivated by the belief that automated
segmentation of arbitrary image sequences will only
be possible if static form constraints are used. Al-
though we have used rather rudimentary static form
constraints here, as equation 1 shows, arbitrary static
analysis results can be used. The uni�ed statistical
framework we have introduced here provides a basis
for future investigations into the analysis needed to
insure automatic and robust scene segmentation.
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A A�ne segmentation given optic 
ow

and covariance
We derive here the M step when we the deviation

meaure Dk(r) is given by:

Dk(r) = (vk � �)
t
�
�1
(vk � �) (2)

and the velocity �elds are assumed to be a sum of N basis

functions (e.g. six in the case of a�ne motion). De�ne

	(r) a 2 by N matrix which give the two components of

the basis functions at location r (i.e. vk(r) = 	(r)�k), then

taking the derivative of the log likelihood with respect to

�k gives: X
r

gk(r)	
t
(r)�

�1
(r)	(r)

!
� =

 X
r

gk(r)	
t
(r)�

�1
�(r)

!

(3)

Which gives an N by N system of equations.

Adding hyper-priors on �

The N by N system of equations obtained above may

be ill-conditioned. We add hyper-priors on � by assuming

a prior distribution on the 
ow �elds of each model:

log P (v) = ��1
X
r

kv(r)k � �2

X
r

k@xv(r)k+ k@yv(r)k

(4)

Now de�ne a matrix 	x(r) which gives the partial deriva-

tive with respect to x of the basis functions at location r

and similarly 	y(r). Then this gives a prior distribution

on the parameters of each model:

log P (�) = ��tM�� (5)

With:

M� =

 X
r

�1	
t
(r)	(r) + �2	

t
x(r)	x(r) + �2	

t
y(r)	y(r)

!

(6)

Taking the derivative of the prior with respect to � gives:

M�� = 0 (7)

Which should be added to equation 3 to give an N by N

system of equations for � in the M step. Note that M�

can be precomputed in advance. In particular for the case

of a�ne basis functions, it is easy to show that M� is a

diagonal matrix.


