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Abstract

Estimating motion in scenes containing multiple
motions remains a di�cult problem for computer
vision. Here we describe a novel recurrent net-
work architecture which solves this problem by
simultaneously estimating motion and segment-
ing the scene. The network is comprised of lo-
cally connected units which carry out simple cal-
culations in parallel. We present simulation re-
sults illustrating the successful motion estima-
tion and rapid convergence of the network on real
image sequences.

1 Introduction

Motion estimation is an ill-posed problem. In other
words, local motion measurements are inherently ambigu-
ous. When the scene contains only one smoothly varying
motion the ill posedness can be overcome by imposing a
smoothness constraint on the solution (e.g. [Poggio et al.,
1985]). The smoothness assumption, however, is not valid
when the scene contains multiple motions, and imposing
it leads to erroneous motion estimates especially at occlu-
sion boundaries (e.g. [Horn, 1986]). One way to modify
the smoothness assumption is to estimate motion discon-
tinuities via line processes and disable motion smoothing
across the line processes [Terzopoulos, 1986, Hutchinson
et al., 1988]. These algorithms are notoriously slow to con-
verge, and more importantly they produce a representa-
tion which is ill suited for dealing with scenes containing
occlusion, such as a scene showing a cat walking behind
a fence. Motion discontinuities can capture the fact that
the cat fragments and the fence posts are not moving to-
gether, but they can not capture the fact that the cat frag-
ments move together. In contrast, the representation we
are interested in computing explicitly groups the fragments
together [Wang and Adelson, 1994, Darrell and Pentland,
1991, Black and Anandan, 1993].

2 Architecture

Our architecture is based on the \divide and conquer"
modularity principle [Jordan and Jacobs, 1994]. Rather
than have one network estimate motion everywhere, we
have multiple motion expert subnetworks competing to ex-
plain the data by minimizing motion error. The error sig-
nal to these expert subnetworks is controlled by a gating

subnetwork which assigns di�erent regions of space to dif-
ferent experts. The advantage of this approach is that
it restores the validity of the smoothness assumption: re-
gions undergoing drastically di�erent motions are assigned
to di�erent experts, and the motion of regions assigned to
a speci�c expert is indeed smoothly varying. The network
simultaneously estimates the motions and the assignments.
The assignment is based on two factors: (1) which expert is
currently doing a better job of explaining the motion data,
and (2) the current assignment of nearby regions having
similar intensities. As shown below this simultaneous es-
timation and segmentation is accomplished using simple
parallel updates.
The architecture and ow of information are depicted

schematically in �gure 1. The motion expert subnetwork is
comprised ofK sheets of retinotopically organized units (K
represents the maximum number of motions in the scene).
Each sheet contains units tuned for a speci�c velocity at a
particular retinal location (cf. [Bultho� et al., 1989]). The
distribution of responses of all velocity tuned units at a
given location represents the velocity estimate of the mo-
tion expert. The input to the motion experts comes from
the motion error subnetwork, which also contains units
tuned for a speci�c velocity at a particular retinal location.
The exact form of these motion selective units is irrelevant,
as long as they represent the local deviation from coherent
motion in a given velocity. The calculation can be based
on correlation as in [Bultho� et al., 1989] or motion energy
as in [Simoncelli et al., 1991]. The input from the motion
error to a sheet in the motion experts subnetwork is mod-
ulated by a corresponding sheet in the gating subnetwork.
The gating subnetwork, in turn, receives input from the
experts and motion error subnetworks as well as a local
intensity subnetwork which modulates the cooperation of
nearby gating network units.

3 Dynamics

We denote by �k(i; j; l) the activity of a unit in the kth
sheet of the motion experts network at grid location i; j
tuned to velocity l, and by E(i; j; l) the activity of a unit in
the motion error network. Similarly, we denote by Gk(i; j)
the activity of unit i; j in the kth sheet of the gating net-
work and by I(i; j) the activity of a unit in the local in-
tensity network. To emphasize the connection to the EM
algorithm we call the dynamics of the gating and expert
networks the E and M dynamics respectively.
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Figure 1: A schematic depiction of the information ow in
the network. In accordance with the \divide and conquer"
modularity principle, we have multiple motion expert sub-
networks competing to explain the data by minimizing mo-
tion error. The error signal to the expert networks is mod-
ulated by a gating subnetwork which assigns di�erent re-
gions of space to di�erent experts. The assignment is based
on the motion error of each expert's estimate as well as
the current assignment of neighboring regions with simi-
lar intensities. The simultaneous estimation of motion and
assignments is accomplished by retinotopically organized
units which carry out simple operations in parallel

E dynamics The gating units are updated by a
weighted summation of inputs followed by a normalizing
nonlinearity:

Gk(i; j) :=
exp( ~Gk(i; j))P
o
exp( ~Go(i; j))

(1)

With:

~Gk(i; j) = 1=�2
X

l

E(i; j; l)�k(i; j; l)� �
X

m;n

�
mn

ij Gk(m;n)

(2)
M dynamics Similarly the motion expert units are up-

dated by a weighted summation of inputs followed by a
normalizing nonlinearity:

�k(i; j; l) :=
exp(~�k(i; j; l))P
o
exp(~�k(i; j; o))

(3)

With:

~�k(i; j; l) = 1=�1
X

m;n

w
mn

ij Gk(m;n)E(i; j; l) (4)

Where wmn

ij is a Gaussian window and �mn

ij is a Gaussian
window modulated by the local intensity network.

4 Energy Function

The dynamics can be derived from the following energy
function:

J(�;G;E) =
X

kijlmn

w
mn

ij Gk(m;n)�k(i; j; l)E(m; n; l)(5)
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�k(i; j; l) log �k(i; j; l)

To understand the justi�cation for this energy function,
consider the expression:

Jij(�k) =
X

l

�k(i; j; l)E(i; j; l) (6)

Recall that E(i; j; l) measures the motion error at location
i; j and hence the higher the motion error for a velocity the
higher the penalty for a unit with that preferred velocity to
be active. Due to the ill-posedness of the motion estima-
tion problem, Jij(�k) will have multiple minima. Therefore
a smoothness constraint may be imposed via a larger inte-
gration window (as in [Lucas and Kanade, 1981]) :

Jij(�k) =
X

l

X

m;n

w
mn

ij �k(i; j; l)E(m; n; l) (7)

But a large integration window is likely to contain multiple
motions. Hence we gate the errors to the kth expert by Gk:

Jij(�k) =
X

l

X

m;n

w
mn

ij Gk(m;n)�k(i; j; l)E(m; n; l) (8)
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Figure 2: A frame from a sequence presented to the net-
work. The sequence shows a person moving behind a plant.

This gives the �rst term of the energy function. The second
term reects the fact that nearby points having similar
intensities should be assigned to the same expert. Finally
the last two terms (the entropies) penalize for distributions
where only one unit is active: omitting these terms causes
the softmin function in equations 3 and 1 to be replaced
by a \hard" winner take all function.
It is easy to show that constrained minimization of the

energy function with respect to �k(i; j; l) gives the M dy-
namics. Minimizing the function with respect to Gk(ij)
gives a slightly di�erent version of the E dynamics with
the termE(i; j; l)�k(i; j; l) replaced by the weighted average
E(i; j; l)

P
wmn

ij �k(m;n; l). Note, however that the veloc-
ity �elds of each expert are by construction smooth. Hence,
this sum is well approximated by the term E(i; j; l)�k(i; j; l)
and the E dynamics can be viewed as an approximate min-
imization. In practice we have found that the approximate
solution works as well as the exact one.

5 Simulation Results

The performance of the network on a real image pair is
illustrated in �gures 2 and 3. An important parameter in
our network is the number of velocity tuned units assumed
to exist at every location, i.e. the sampling used in dis-
cretizing velocity space. In the simulations reported here,
we assumed that the sampling is su�ciently dense such
that the distribution of unit activity approximates a con-
tinuous function. As a measure of motion error we used
the gradient constraint (cf. [Horn, 1986]):

E(i; j; l) = (dxtVl + dt)2 (9)

Where dx;dt denote the temporal and spatial derivatives
at location i; j respectively. Note that this expression is

quadratic in Vl. Thus the term ~�k(i; j; l) in equation 4
is also quadratic in Vl and equation 3 can be evaluated
analytically.
Figure 2 shows one frame from a sequence showing a per-

son moving behind a plant. Figure 3 shows the activity in
the network as a function of time. On the left is shown the
activity in a sheet of the gating subnetwork. The grey level
represents the probability that a pixel be assigned to one of
the experts: white regions are con�dently assigned, black
regions are con�dently rejected and grey regions can be

equally assigned to both experts (these are regions where
there is no motion information). As can be seen, the net-
work converges rapidly to a correct motion estimate and
segmentation.

6 Discussion

The energy function in equation 5 is, of course, not the only
possible one to use as a cost function for motion estima-
tion and integration. In related work [Weiss and Adelson,
1994] we have experimented with other cost functions. The
common feature of the various functions we have explored
is that they contain the following three terms:

� a term measuring the local prediction error, i.e. how
well does the expert to whom this pixel is assigned
predict the local motion measurements.

� a term rewarding coherence of the motion �elds of
each expert.

� a term rewarding coherence of the assignments. i.e,
rewarding assignments in which neighboring pixels of
similar intensities are assigned to the same expert.

It is the third term that di�erentiates our work from
many computer vision algorithms for motion segmentation.
We believe that the integration of form and motion cues for
segmentation is crucial. In our current work we are study-
ing ways to improve this integration by having perceptual
organization cues, rather than simple local intensity mod-
ulate the local interconnections in the gating network.
A neural net model which also includes gating of mo-

tion energy units has been recently suggested by [Nowlan
and Sejnowski, 1993]. However, their model, unlike the one
presented here, does not compute segmentation or group-
ing. In their algorithm, the gating units are trained o�-line
and essentially learn to suppress measurements centered on
motion boundaries.
The network we have been using is closely related to the

EM algorithm for mixture estimation studied by [Jordan
and Jacobs, 1994]. The main di�erence is that in their
mixture of experts network the experts and the gating net-
works are assumed to be generalized linear models. This
serves to keep the number of parameters estimated signi�-
cantly smaller than the number of measurements. Here we
keep the large number of parameters to estimate (which
enables us to segment arbitrarily shaped regions) and add
additional smoothness constraints on both the gating pa-
rameters and the motion parameters. A second di�erence
between our work and that of Jordan and Jacobs is our
emphasis on parallel implementation. Unlike the general
mixture estimation problem, motion segmentation has the
feature that all measurements are typically acquired simul-
taneously. One is tempted therefore to look for algorithms
that can be implemented in hardware by retinotopic units
performing simple operations in parallel. As our simula-
tion results show, units of this type can collectively produce
rapid and accurate motion estimation and segmentation.
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